КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Описание экспериментальной установки и порядок проведения опытаСуществование ламинарного и турбулентного режимов движения можно проиллюстрировать опытом (вошедшим в историю как классический опыт Рейнольдса) на лабораторной установке (рис.4.1). Рис. 4.1. Установка дляизучения режимов движения жидкости
Для визуального наблюдения режимов течения в стеклянной трубе 1, по которой движется вода, в основной поток вводится подкрашенная струйка жидкости из сосуда 3. В качестве подкрашеннойжидкости используется слабый раствор марганца (нигрозина), подбирая его плотность приблизительно равной плотности воды во избежание гравитационного перемешивания. Установившееся движение осуществляется поддержанием в сосуде 2 постоянного напора путем излива лишней воды. Скорость течения воды в трубе регулируется краном 4. Подкрашенная жидкость вытекает по капиллярной трубке и вводится в основной поток через иглу. Подача подкрашенной жидкости регулируется таким образом, чтобы скорости цветной струйки и воды в трубе были примерно одинаковыми. При очень малых скоростях течения цветная струйка на всем протяжении трубы 1 не перемешивается с основным потоком. Плавным увеличением скорости от нуля до максимального значения можно уловить момент, когда подкрашенная струйка размывается и жидкость по всему сечению трубы оказывается окрашенной. Это и есть переход от ламинарного режима к турбулентному. Опыт О.Рейнольдса является классическим примером диалектического закона перехода количества в качество. Здесь количественные изменения скорости (увеличение или уменьшение) приводят в новое качество движение (смена ламинарного режима турбулентным или турбулентного ламинарным). Установка Рейнольдса может быть использована не только для визуального наблюдения режимов движения, но и для определения количественных зависимостей. Разность показаний пьезометров, установленных в начале и конце стеклянной трубы, определяет потерю напора на рассматриваемом участке. Для качественной оценки режимов движения жидкости необходимо провести замеры пьезометрических напоров P1/(rg), P2/(rg) по пьезометрам, установленным в начале и конце стеклянного трубопровода, объем протекающей жидкости W за время t с визуальным фиксированием состояния подкрашенной струйки. Измерить температуру воды в опыте для расчета кинематическойвязкости воды. Данные измерений занести в табл. 4.1.
Таблица.4.1.
Изменяя расход в трубопроводе, а следовательно, и скорость движения жидкости V, можно найти зависимость hl = f(V). Если на логарифмической сетке (рис. 4.2) по оси абсцисс отложить значения lgV, а по оси ординат - соответствующие значения lghl, то, соединив опытные точки, получим две прямые линии аb и cd. Линия аb соответствует ламинарному режиму, а cd - турбулентному. Точка пересечения прямых е определяет критическую скорость течения жидкости в круглой трубе Vкр, что дает возможность определить критическое число Рейнольдса Reкр.оп:
(4.2)
Рис. 4.2. ●- ламинарный, ▲- турбулентный режимы
|