КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Классификация спектроскопических методов анализаСуществует несколько подходов к классификации спектроскопических методов анализа. Классификационным критерием может быть вид электромагнитного излучения, характер его взаимодействия с веществом, вид частиц, взаимодействующих с электромагнитным излучением. Вид используемого электромагнитного излучения В спектроскопических методах анализа используется практически весь диапазон электромагнитного излучения: от g-излучения до радиоволн. Классификация спектроскопических методов анализа в зависимости от используемого электромагнитного излучения и вызываемых им процессов приведена в табл 19.1. Табл. 19.1. Классификация спектроскопических методов анализа в зависимости от используемого электромагнитного излучения
Все виды электромагнитного излучения имеют одинаковую природу, поэтому между различными спектроскопическими методами анализа имеется много общего. Вместе с тем, различные виды электромагнитного излучения по-разному взаимодействуют с веществом. Поэтому каждый спектроскопический метод анализа имеет свою область применения, свою аппаратуру, особенности получения аналитического сигнала и т.д. Характер взаимодействия электромагнитного излучения с веществом В зависимости от характера взаимодействия электромагнитного излучения с веществом различают следующие группы спектроскопических методов анализа: · методы, основанные на поглощении электромагнитного излучения (абсорбционные методы); · методы, основанные на испускании веществом электромагнитного излучения (эмиссионные методы); · методы, основанные на рассеянии электромагнитного излучения, на отражении электромагнитного излучения и других процессах. В абсорбционных спектроскопических методах через исследуемый образец пропускают электромагнитное излучение определённой длины волны. Если в данном образце имеются частицы, способные поглощать такое электромагнитное излучение, то интенсивность выходящего излучения будет меньше интенсивности излучения, попадающего на образец. Практически в абсорбционных методах анализа сравнивают интенсивность электромагнитного излучения, прошедшего через образец и не прошедшего через него (рис. 19.3). В эмиссионных спектроскопических методах исследуемые частицы тем или иным образом переводят в возбуждённое состояние. При возвращении в основное состояние они испускают электромагнитное излучение, интенсивность которого и измеряется (рис 19.3). Переход частицы в возбуждённое состояние может происходить как в результате воздействия на неё энергии электромагнитного излучения (например, при фотолюминесценции), так и в результате воздействия других видов энергии (например, фотометрия пламени).
Рис. 19.3. Принципиальная схема абсорбционных (1) и эмиссионных (2) спектроскопических методов анализа Вид частиц, взаимодействующих с электромагнитым излучением В зависимости от вида частиц, взаимодействующих с электромагнитным излучением, спектроскопические методы анализа разделяют на атомные и молекулярные. Атомные и молекулярные спектроскопические методы отличаются друг от друга характером получаемых спектров (атомные - линейчатые, молекулярные состоят из широких полос поглощения или испускания), используемой аппаратурой и кругом решаемых задач.
|