КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Формула СимпсонаДля получения формулы Симпсона применяется квадратичный интерполирующий полином, следовательно, за элементарный интервал интегрирования принимается отрезок [xi;xi+2]. Поэтому разобьем интервал интегрирования [a;b] наn отрезков, где n=2m – четное число (рис. 6.4.4-1). Рис. 6.4.4-1 Для получения интерполирующей функции на интервале [xi;xi+2] воспользуемся первой интерполяционной формулой Ньютона, используя в качестве узлов интерполяции точки xi, хi+1 и xi+2.
(6.4.4-1)
В пределах отрезка [xi;xi+2], на котором подынтегральная функция аппроксимирована многочленом (6.4.4-1), получим приближенную формулу Симпсона:
(6.4.4-2)
Для отрезка [x0;x2]
Для отрезка [x2;x4]
Тогда для всего интервала интегрирования [a;b] формула Симпсона выглядит следующим образом: или (6.4.4-3)
при
Схема алгоритма метода Симпсона приведена на рис. 6.4.4-2.
Рис. 6.4.4-2. Схема алгоритма интегрирования по методу Симпсона с использованием правила Рунге
|