КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теоретическое введение. Искусственный нейрон имитирует в первом приближении свойства биологического нейронаИскусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рисунке 3 представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных , поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес , и поступает на суммирующий блок, обозначенный . Каждый вес соответствует «силе» одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором .) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть . В векторных обозначениях это может быть компактно записано следующим образом: Рисунок 3. Модель искусственного нейрона где К – постоянная, пороговой функции в остальных случаях.
|