Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Количественные методы описания систем.




Методы описания систем классифицируются в порядке возрастания формализованности - от качественных методов, с которыми в основном и связан был первоначально системный анализ, до количественного системного моделирования с применением ЭВМ.

Количественные методы связаны с анализом вариантов, с их количественными характеристиками корректности, точности и т. п. Для постановки задачи эти методы не имеют средств, почти полностью оставляя осуществление этого этапа за человеком.

Уровни описания систем. При создании и эксплуатации сложных систем требуется проводить многочисленные исследования и расчеты, связанные с:

· оценкой показателей, характеризующих различные свойства систем;

· выбором оптимальной структуры системы;

· выбором оптимальных значений ее параметров.

Выполнение таких исследований возможно лишь при наличии математического описания процесса функционирования системы, т. е. ее математической модели.

Сложность реальных систем не позволяет строить для них «абсолютно» адекватные модели. Математическая модель (ММ) описывает некоторый упрощенный процесс, в котором представлены лишь основные явления, входящие в реальный процесс, и лишь главные факторы, действующие на реальную систему.

Какие явления считать основными и какие факторы главными — существенно зависит от назначения модели, от того, какие исследования с ее помощью предполагается проводить. Поэтому процесс функционирования одного и того же реального объекта может получить различные математические описания в зависимости от поставленной задачи.

Так как ММ сложной системы может быть сколько угодно много и все они определяются принятым уровнем абстрагирования, то рассмотрение задач на каком-либо одном уровне абстракции позволяет дать ответы на определенную группу вопросов, а для получения ответов на другие вопросы необходимо провести исследование уже на другом уровне абстракции.

Наиболее пригодными являются следующие уровни абстрактного описания систем:

· символический, или, иначе, лингвистический;

· теоретико-множественный;

· абстрактно-алгебраический;

· топологический;

· логико-математический;

· теоретико-информационный;

· динамический;

· эвристический.

Условно первые четыре уровня относятся к высшим уровням описания систем, а последние четыре — к низшим.

Лингвистический уровень описания — наиболее высокий уровень абстрагирования. Из него как частные случаи можно получить другие уровни абстрактного описания систем более низкого ранга.

Высказывание на данном абстрактном языке – это некоторое предложение (формула), построенное на правилах данного языка. Все высказывания делят обычно на два типа. Термы — некоторые множества, с помощью которых перечисляют элементы, или, иначе, подсистемы изучаемых систем, а функторы устанавливают характер отношений между введенными множествами.

Множество образуется из элементов, обладающих некоторыми свойствами и находящимися в некоторых отношениях между собой и элементами других множеств.

С помощью термов и функторов можно показать, как из лингвистического уровня абстрактного описания (уровня высшего ранга) как частный случай возникает теоретико-множественный уровень абстрагирования (уровень более низкого ранга).

На теоретико-множественном уровне абстракции можно получить только общие сведения о реальных системах, а для более конкретных целей необходимы другие абстрактные модели, которые позволили бы производить более тонкий анализ различных свойств реальных систем. Эти более низкие уровни абстрагирования, в свою очередь, являются уже частными случаями по отношению к теоретико-множественному уровню формального описания систем.

Так, если связи между элементами рассматриваемых множеств устанавливаются с помощью некоторых однозначных функций, то приходим к абстрактно-алгебраическому уровню описания систем.

Если же на элементах рассматриваемых множеств определены некоторые топологические структуры, то в этом случае приходим к топологическому уровню абстрактного описания систем.

Логико-математический уровень описания систем нашел широкое применение для: формализации функционирования автоматов; задания условий функционирования автоматов; изучения вычислительной способности автоматов.

При любом процессе управления или регулирования, осуществляемом живым организмом или автоматически действующей машиной либо устройством, происходит переработка входной информации в выходную. Поэтому при теоретико-информационном уровне абстрактного описания систем информация выступает как свойство объектов и явлений (процессов) порождать многообразие состояний, которые посредством отражения передаются от одного объекта к другому и запечатлеваются в его структуре (возможно, в измененном виде).

Динамический уровень абстрактного описания систем связан с представлением системы как некоторого объекта, куда в определенные моменты времени можно вводить вещество, энергию и информацию, а в другие моменты времени — выводить их, т. е. динамическая система наделяется свойством иметь «входы» и «выходы», причем процессы в них могут протекать как непрерывно, так и в дискретные моменты времени. Кроме этого, для динамических систем вводится понятие «состояние системы», характеризующее ее внутреннее свойство.

Эвристический уровень абстрактного описания систем предусматривает поиски удовлетворительного решения задач управления в связи с наличием в сложной системе человека.

*Эвристические методы проектирования основаны на подсознательном мышлении, не допускают алгоритмизации и характеризуются неосознанным (интуитивным) способом действий для достижения осознанных целей.

Таким образом, обзор уровней абстрактного описания систем показывает, что выбор подходящего метода формального описания при изучении той или иной реальной системы является всегда наиболее ответственным и трудным шагом в теоретико-системных построениях. Эта часть исследования почти не поддастся формализации и во многом зависит от эрудиции исследователя, его профессиональной принадлежности, целей исследования и т. д. Наибольшее значение в настоящее время в абстрактной теории систем придается теоретико-множественному, абстрактно-алгебраическому и динамическому уровням описания систем.


Поделиться:

Дата добавления: 2015-04-18; просмотров: 262; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты