КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Система, как отношение на абстрактных множествахОдним из центральных понятий теории систем является понятие системы, определенное в теоретико-множественных терминах: где V, — вес компоненты; iÎI — декартова произведения ÄVi , называемые объектами системы S; I — множество индексов. В кибернетике наибольший интерес представляют системы с двумя объектами — входным объектом X и выходным объектом Y: (3.1) Основными причинами определения системы как теоретико-множественного отношения являются следующие: 1. Система определяется в терминах ее наблюдаемых свойств или, точнее говоря, в терминах взаимосвязей между этими свойствами, а не тем, что они на самом деле собой представляют (т. е. не с помощью физических, химических, биологических, социальных или других явлений). 2. Определение системы как отношения вида (3.1) является предельно общим. 3. Системы часто задаются с помощью некоторых уравнений относительно соответствующих переменных. Каждой такой переменной можно поставить в соответствие некоторый объект системы, описывающей область значений соответствующей переменной. Для построения теории систем на теоретико-множественном уровне, исходя из определения (3.1), необходимо наделить систему как отношение некоторой дополнительной структурой. Это можно сделать двумя способами: ввести дополнительную структуру для элементов объектов системы; например, рассматривать сам элемент vi,Î Vi как некоторое множество с подходящей структурой; ввести структуру непосредственно для самих объектов системы Vi, iÎI. Первый способ приводит к понятию (абстрактных) временных систем, а второй — к понятию алгебраических систем. «ВХОД — ВЫХОД» Система функционирует во времени. Множество моментов времени t, в которые рассматривается функционирование системы, обозначим Т, t ∈Т. Входные сигналы системы. Второе и третье предположения о характере функционирования систем направлены на описание взаимодействия системы с внешней средой. На вход системы могут поступать входные сигналы хÎХ, где X — множество входных сигналов системы. Входной сигнал, поступивший в момент времени t, обозначается x(t). Входные сигналы могут описываться некоторым набором характеристик. Например, если входными сигналами АСУ аэродромом считать самолеты, поступившие в зону аэродрома, то каждый из них может быть описан: 1) координатами точки взлета (I, a, e) (I-наклонная дальность, а - азимут и e - угол места); 2) вектором скорости (I, а, e); 3) признаками, характеризующими тип самолета (V), массу груза (G), требованиями к аэродромному обслуживанию (d) В общем случае будем предполагать, что входной сигнал X1ÎXi, где X, — заданные множества (i= 1, n). Прямое произведение X=X1´X2´.... ´.Хn называется пространством входных сигналов. Xi - элементарные оси, входной сигнал х представляет собой точку пространства X, описываемую координатами x1, x2, ..., хn. В общем случае ХÌХ. Выходные сигналы системы. Система способна выдавать выходные сигналы yÎY, где Y — множество выходных сигналов системы. Выходной сигнал, выдаваемый системой в момент времени tÎТ, обозначается y(i). Если выходной сигнал у описывается набором характеристик y1, y2, . . . ym, таких, что уÎYj, j=l, m, Yj — заданные множества, то прямое произведение Y=Y1´ Y2´ . . . ´ Ym называется пространством выходных сигналов системы. По аналогии с входным процессом введем понятие выходного процесса y=N(t), а также определим выходное сообщение (t, yN)T и его отрывок (t, yN]t1t2 на полуинтервале (t1, t2]. Модель «черный ящик»:входы и входы системы задаются в виде двух множеств, никаких других отношений между этими множествами фиксировать нельзя (иначе это уже будет не "черный", а прозрачный ящик). Построение модели "черного ящика" не является тривиальной задачей, так как на вопрос о том, сколько и какие именно входы и выходы следует включать в модель, ответ не прост и не всегда однозначен. Главной причиной множественности входов и выходов в модели "черного ящика" является то, что всякая реальная система, как и любой объект, взаимодействует с объектами окружающей среды неограниченным числом способов. Строя модель системы, мы из этого бесчисленного множества связей отбираем конечное их число для включения в список входов и выходов. В пространстве состоянийсоздаётся модель динамической системы, включающая набор переменных входа, выхода и состояния, связанных между собой дифференциальными уравнениями первого порядка, которые записываются в матричной форме.
|