КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Требования к качеству масел
Требования, предъявляемые к качеству масел, определяются спецификой рабочего процесса и конструкцией двигателя. Считается, что условия работы в поршневых двигателях наиболее тяжёлые по сравнению с другими двигателями. Это объясняется температурным режимом работы масла в ДВС. Например, в камере сгорания температура достигает 25000С. Температура газов, прорывающихся в картер на такте сжатия в бензиновом двигателе 150…4500С, в дизеле – 500…700 0С. Для современных двигателей температура первой поршневой канавки достигает 270…2800С, а при наддуве – 300…3500С, рабочая температура масла в картере находится пределах 50…1000С. Дополнительные требования к качеству масел объясняются тем, что двигатели эксплуатируются в широких пределах изменения температуры окружающего воздуха, например, в нашей климатической зоне от + 30…35 и даже 400С летом до – 30 …35 и даже 400С. На Севере этот разброс температур ещё шире. Исходя из этого, рабочий диапазон моторного масла по температуре очень широк – от температуры окружающего воздуха до рабочей температуры масла. Кроме общих требований к моторным маслам предъявляются и дополнительные. Например, уплотнять зазор в сопряжённых деталях и прежде всего в цилиндропоршневой группе, обладать нейтрализующими свойствами. Многие функции и требования, предъявляемые к моторным маслам, взаимосвязаны. Например, отвод тепла от деталей и уплотнение зазоров в их сопряжении. При плохом уплотнении газы прорываются в картер, нарушая сплошность масляной плёнки, что приводит к перегреву деталей цилиндропоршневой группы. Исходя из вышесказанного, можно сформулировать следующие требования к моторному маслу, оно должно: 1. иметь вязкость, обеспечивающую надёжную смазку двигателя при всех рабочих температурах с наименьшими потерями на трение; 2. обладать низкотемпературными свойствами для облегчения пуска двигателя в зимнее время; 3. иметь хорошие моющие и диспергирующие свойства для необходимой чистоты цилиндро-поршневой группы и других деталей; 4. обладать высокими противоокислительными свойствами для торможения процессов окисления масла в двигателе и уменьшения накопления продуктов окисления в масле, составляющих основу для нагара и отложений; 5. защищать от коррозии подшипники из цветных металлов и от ржавления остальные детали; 6. уменьшать износ деталей; 7. препятствовать прорыву газов из камеры сгорания в картер путём заполнения зазоров между поршневыми кольцами и зеркалом цилиндра. При пуске это улучшает компрессию, при работе уменьшает попадание продуктов сгорания; 8. не содержать токсичных компонентов. Вязкостно-температурные свойства.Вязкость (внутреннее трение) – свойство жидкости оказывать сопротивление относительному перемещению слоёв. Величина вязкости выражается в единицах кинематической вязкости сСт (мм2/с) или динамической вязкости сПз (Па*с). Перевод одних единиц в другие осуществляется по формуле: где n – кинематическая вязкость; h – динамическая вязкость; d – плотность масла. С повышение давления между трущимися деталями вязкость масла возрастает. С понижением температуры вязкость масла возрастает вплоть до потери текучести. Для характеристики вязкостных свойств масла иногда используют индекс вязкости (ИВ), характеризующий степень изменения вязкости масла в зависимости от температуры. Для определения ИВ необходимо знать вязкость масла при 500С и 1000С. Требования к вязкостно-температурным свойствам моторных масел противоречивы. С одной стороны, для обеспечения надёжного запуска двигателя при низких температурах масло должно иметь невысокую вязкость, т.е. обладать высокой подвижностью. Это позволяет добиться хороших пусковых свойств и прокачиваемости, обеспечить надёжную смазку трущихся деталей в момент пуска. С другой стороны, при высоких рабочих температурах масла, характерных для установившихся режимов работы двигателя, необходима высокая вязкость масла для предотвращения перехода к граничному режиму смазки и повышению износа. Для осуществления надёжности пуска требования к вязкостно-температурным свойствам масел регламентированы стандартом, в соответствии с которым вязкость масел для бензиновых двигателей должна быть при 1000С не менее 6 мм2/с (кинематическая), а при – 400С не более 170 Па*с (динамическая). Масла для дизелей при этих же условиях должно иметь вязкость не менее 8 мм2/с и не более 220 Па*с соответственно. Чем меньше вязкость при отрицательной температуре, тем при более низкой температуре можно достичь требуемого минимального числа оборотов коленчатого вала и при более низкой температуре запустить двигатель. Всесезонные масла получают путём загущения маловязкой минеральной основы полимерной присадкой. Масла, полученные с использованием синтетических продуктов, превосходят по вязкостно-температурным свойствам загущенные масла: При одной и той же вязкости при положительных температурах они обладают меньшей вязкостью при отрицательных температурах. Использование масел, имеющих высокую вязкость при рабочих температурах, необходимо для снижения износа деталей двигателя. С другой стороны с увеличением вязкости масла повышаются потери мощности на трение, следовательно, и увеличивается расход топлива. Таким образом, выбор вязкости масла должен учитывать условия применения и особенности конструкции двигателя. Защитные свойства.Качество моторного масла и надёжность работы двигателя резко снижаются при наличии в масле воды, которая может попадать в масло при хранении и в период эксплуатации. Присутствие в масле 1…2 % воды в 5 раз повышает износ цилиндро-поршневой группы и в 1,4…1,6 раз износ вкладышей. Кроме того, попадание воды в масло усиливает пенообразование, снижает щелочное число, приводит к выпадению из масла присадок. Особую опасность представляет собой попадание водяных паров и конденсация влаги в двигателе, находящемся на длительном хранении. В этот период интенсивно развиваются процессы электрохимической коррозии, при которой протекают два сопряжённых процесса: анодный – переход металла в раствор в виде ионов с оставлением эквивалентного количества электронов в металле и катодный – ассимиляция появившихся в металле избыточных электронов каким-либо деполяризатором (кислородом, продуктами окисления масла). При последующей эксплуатации таких двигателей увеличивается износ их деталей. Так, износ на 1000 км пробега для автомобилей длительного хранения во влажной атмосфере по сравнению с автомобилями непрерывной эксплуатации оказывается больше по цилиндрам в 1,5…2 раза, по поршням в 1,5 раза и по шейкам коленчатого вала на 10…15 %. Для защиты двигателей от «ржавления» в процессе хранения в моторные масла вводят ингибиторы коррозии. В зависимости от типа используемого ингибитора и его концентрации получают консервационные, консервационно-рабочие и рабоче-консервационные масла. Введение в моторное масло ингибиторов коррозии не только снижает «ржавление», но и в ряде случаев позволяет уменьшить износ деталей в процессе работы. Противопенные свойства.При работе масла в двигателе создаются благоприятные условия для образования пены. Этому способствует перемешивание масла с воздухом вследствие вращающихся деталей КШМ, наличие в масле следов воды и ряда стабилизирующих пену веществ: продуктов окисления масла. Обильное пенообразование нарушает нормальные условия режима смазки. Для устранения пенообразования в масло вводят противопенные присадки. Действие противопенных присадок заключается в том, что, являясь соединениями относительно плохо растворяющимися в маслах, они находятся в основном на поверхностях раздела фазы воздух-масло. В результате этого скорость разрушения пены становится больше, чем скорость её образования. Образование на границе воздух-масло барьера из молекул присадки создаёт определённые трудности для прохождения кислорода вглубь масла. Предполагают, что это свойство противопенных присадок повышает стойкость масла к окислению. Пенообразование уменьшается с повышением температуры масла, так как при этом вязкость масла снижается и стойкость пены падает. Попадание воды в масло приводит к увеличению пенообразования: из масла капельки воды начинают испаряться, приводя к зарождению отдельных газовых пузырьков, а затем и пены. Замечено, что наиболее часто пенообразование наблюдается в двигателях с «сухим» картером, чем в двигателях с «мокрым» картером.
|