КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Средняя величина в статистике, ее сущность и условия применения. Виды и формы средних.Средние величины – это обобщающие показатели общественных явлений по одному количественно варьирующему признаку. Ср. выражает типичное единиц совокупности. Особенности ср.: 1) она характеризует ту или иную совокупность в целом; 2) в ней ср. погашаются отдельные индивидуальные отклонения единиц по изучаемому признаку; 3) ср. отражает типичные черты и свойства массы единиц; 4) в сочетании с методом статистических группировок возникает возможность изучения взаимосвязей между группировочными и результативными признаками; 5) ср. величина является базой для прогнозирования; 6) многие процессы изучаются только на основании ср.; 7) ср. показывает количественное различие и сходство двух совокупностей. При расчете ср.: 1) расчет только однородных по качеству совокупностей, для этого надо сочетать метод ср. и метод группировок2) общее ср. необходимо дополнять групповыми средними и индивидуальными величинами3) для расчета ср. нужна масса единиц4)необходимо правильно выбирать единицу совокупности ср.В каждом конкретном случае применяется одна из ср. величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Все они - класс степенных средних и объединяются общей формулой (при различных значениях m): В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется ср. гармоническая простая. Ср. геометрическая: применяется, когда характеризуют средний коэффициент роста.Она исчисляется извлечением корня степени п из произведения отдельных значений. Широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения. Ср. квадратическая: применяется, когда нужен расчет среднего размера признака, выраженного в квадратных единицах измерения. Она бывает простой, средней, кубической, кубической (простой, взвешенной). Особым видом средних величин являются структурные ср. К таким показателям относятся мода и медиана. Мода Мо – значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту. Модальный интервал определяется по наибольшей частоте. Медиана Ме – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные части – меньше медианы и больше медианы. Необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В случае четного объема ряда медиана равна средней из двух вариантов. Значение медианы вычисляется линейной интерполяцией по формуле:
|