Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Понятие о вариации признака в совокупности. Система показателей вариации.Ее применение в анализе финансово-экономической деятельности предприятия.




Читайте также:
  1. A) Продукт интеллектуальной деятельности квалифицированных специалистов различных профессиональных групп
  2. Gt; 89. Предмет и функции СО как научной дисциплины и практической области деятельности. (не до
  3. II пара ЧМН - зрительный нерв и зрительная система.
  4. II. Доходы от обычных видов деятельности
  5. II. Рабочие определения, используемые при анализе литературного произведения
  6. II. Тарифная система
  7. II. ХИМИЯ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, БИОЛОГИЧЕСКАЯ РОЛЬ, ПРИМЕНЕНИЕ В ВЕТЕРИНАРИИ
  8. III) система статично невизначена.
  9. PR в выставочной деятельности.
  10. PR-кампания как особый вид коммуникационной деятельности. Признаки PR-кампании.

Вариация-различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям вариации относятся:размах вариации,среднее линейное отклонение,дисперсия,среднее квадратическое отклонение, коэффициент вариации.размах вариации R, .Размах вариации показывает лишь крайние отклонения признака. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Это среднее линейное отклонение (среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической). Среднее линейное отклонение для несгруппированных данных: , где п – число членов ряда; для сгруппированных данных: , где - сумма частот вариационного ряда. Дисперсияпризнака - средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий. Простая дисперсия для несгруппированных данных: ; взвешенная дисперсия для вариационного ряда: . Cвойства дисперсии: 1) если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, дисперсия не изменится; 2) если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия уменьшится или увеличится в раз. Используя второе свойство дисперсии, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов: , где i – величина интервала; -новые (преобразованные) значения вариантов (А – условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой); - момент второго порядка; - квадрат момента первого порядка. Среднее квадратическое отклонение равно корню квадратному из дисперсии: для несгруппированных данных: , для вариационного ряда: . Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения. Исчисляем среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака . Дисперсия альтернативного признака: . Подставив в формулу дисперсии q = 1 – p, получим . Таким образом, - дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком. Среднее квадратическое отклонение альтернативного признака . Для сравнения вариаций различных признаков, используют относительный показатель вариации – коэффициент вариации. Коэффициент вариации отношение среднего квадратического отклонения к средней арифметической: . Также коэффициент вариации используется как характеристика однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%


Дата добавления: 2015-04-18; просмотров: 22; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты