КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Математические модели на микроуровнеРассмотрим модели технических систем на микроуровне. В большинстве случаев это распределенные модели (объекты с распределенными параметрами) и они представляют собой системы дифференциальных уравнений в частных производных. При создании математических моделей целесообразно исходить из основных физических законов в их наиболее «чистом», фундаментальном виде. Такой подход обеспечивает наиболее адекватное описание объектов, протекания процессов и явлений окружающего нас мира. Фундаментальными физическими законами в первую очередь являются законы сохранения массы, количества движения, энергии. Эти законы можно сформулировать в одном общем виде: изменение во времени некоторой субстанции в элементарном объеме равно сумме притока-стока этой субстанции через поверхность элементарного объема. Субстанцией служат масса, количество движения, энергия. Эта формулировка остается справедливой и для некоторых других субстанций, например, количества теплоты, количества зарядов, количества элементарных частиц и др. Если внутри элементарного объема происходит генерация или уничтожение рассматриваемой субстанции, то к сумме притока-стока нужно добавить соответствующий член, отражающий данное явление. В этом случае общий вид уравнений, составляющих основу большинства распределенных моделей, будет следующим: где φ – некоторая фазовая переменная, выражающая субстанцию (плотность, энергию и т. п.); – поток фазовой переменной; G – скорость генерации субстанции; t – время. Поток фазовой переменной φ есть вектор =(Jx, Jy, Jz) Дивергенция (расходимость) этого вектора определяется общим соотношением является скалярной величиной и характеризует сумму притока-стока через поверхность элементарного объема. Рассмотрим основные уравнения некоторых физических процессов.
|