![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Зубошлифование ⇐ ПредыдущаяСтр 6 из 6 Зубошлифование является практически единственным методом обработки закаленных зубчатых колес 7 и выше степеней точности. Наибольшее распространение в производстве получили 4 способа шлифования зубьев цилиндрических колес: 1) Шлифование зубьев дисковым кругом с фасонной рабочей поверхностью по методу копирования с единичным делением 2) Шлифование зубьев дисковым кругом с конической рабочей поверхностью по методу обката с единичным делением 3) Шлифование двумя тарельчатыми кругами по методу обката с единичным делением 4) Шлифование зубьев червячным абразивным кругом по методу обката с непрерывным делением При обработке зубьев по методам копирования точность зубчатых колес определяется в основном точностью эвольвентного профиля круга и точностью делительного механизма (делительного диска) станка. Производительность станков сравнительно высокая, т.к. впадина формируется одновременно по всему её периметру, потери на деление невелики . Однако, переналадка станка весьма сложная, т.к. требуется смена копиров заправочного устройства, а иногда и делительного диска. Поэтому применение этого способа шлифования целесообразно лишь в условиях крупносерийного производства. Точность зубчатых колес, изготовленных этим способом соответствует 6-7 степени точности по ГОСТ 1643-81. При шлифовании зубьев дисковым кругом с конической рабочей поверхностью (рис. 3.19.) воспроизводится зацепление обрабатываемого колеса 1 с производящей рейкой 2. Боковые конические поверхности шлифовального круга 3 материализуют при этом зуб производящей рейки. Если форма образования впадины происходит при прямом и обратном движении обката заготовки, то для устранения влияния зазоров (люфтов) в механизме обката на точность обработки левая и правая стороны зубьев шлифуются раздельно, поэтому толщина круга должна быть несколько меньше номинальной толщины зуба производящей рейки. Рис. 3.19. – Схема образования эвольвентного профиля зуба. Структурная кинематическая схема зубошлифовального станка представлена на рис. 3.20. Движение обката обеспечивается настройкой цепи обката, конечными звеньями которой являются червячная 5 и винтовая 4 передачи. Деление осуществляется за счет поворота планшайбы стола 6 на требуемый угол при разомкнутой цепи обката в конце каждого двойного хода стола станка. Таким образом, точность зуюошлифования во многом определяется точностью червячной и винтовой передач, а также точностью механизма деления станка. Для шлифования косозубых колес ползун, несущий шлифовальную бабку поворачивается на соответствующий угол (рис. 3.20., б). Рис. 3.20. – Структурная кинематическая схема зубошлифовального станка. Станки, работающие дисковым кругом с конической рабочей поверхностью, наиболее универсальны, поэтому основная область их применения – единичное и мелкосерийное производства. Достижимая точность зубошлифования соответствует 6-7 степени точности по ГОСТ 1643-81. Станки, работающие двумя тарельчатыми кругами, обеспечивают 5-6 степень точности зубчатых колес. Такая точность помимо общих требований к точности исполнения станков обуславливается минимальным числом звеньев в механизме обката станка и отсутствием в нем зазоров, а также точностью делительного диска, автоматической правкой круга и компенсацией его размерного износа. Механизм обката станка (рис. 3.21.) содержит точный ролик 1, установленный соосно с заготовкой 2 на подвижной каретке 3. Диаметр ролика Две стальные ленты охватывают ролик по окружности и крепятся к станине станка. При натяжении ленты материализуют начальную плоскость станочного зацепления, по которой катится без скольжения ролик и делительный цилиндр заготовки. Таким образом, имитируется зацепление заготовки с производящей рейкой 5, зубья которой материализуют 2 тарельчатых круга 6. В процессе обработки каретка 3 получает быстрые возвратно-поступательные перемещения Рис. 3.21. – Схема механизма обката станка. Для автоматической правки шлифовального круга используют специальный механизм, который в процессе шлифования зубьев периодически правит круг. Весьма точными и наиболее производительными являются станки, работающие червячным шлифовальным кругом (рис. 3.22.). Их кинематическая схема аналогична кинематической схеме зубофрезерных станков.
Рис. 3.22. – Структурная схема шлифовального станка, работающего абразивным червяком: 1 – Заготовка, 2 – Абразивный червяк, 3 – Делительное колесо, 4 – Делительный червяк, 5 – Устройство согласования вращательных движений круга и стола. Однако, создание зубошлифовальных станков с механическими кинематическими связями оказалось весьма затруднительным, вследствие недопустимо высоких скоростей скольжения делительной червячной передачи. Поэтому в зубошлифовальных станках необходимая согласованность вращательных движений круга и стола с заготовкой обеспечивается за счет так называемого жесткого элек-кого вала. Ориентировочная производительность станков, работающих абразивным червяком, примерно 10-15 сек/зуб для колес средних модулей. Достижимая точность соответствует 5-6 степени по ГОСТ 1643-81. Предварительная правка червячных кругов производится накатным роликом, а окончательная (чистовая) – алмазным. Данный способ зубошлифования рекомендуется для крупносерийного производства. При изготовлении колес малых модулей (до 2 мм) предварительное зубонарезание целесообразно не производить, а вышлифовывать зубья непосредственно из целой закаленной заготовки. Рассмотренные способы зубошлифования имеют один общий недостаток – возможное появление прижогов на боковых поверхностях зубьев и, как следствие, снижение эксплуатационных характеристик зубчатых колес. Устранить опасность прижогов можно за счет назначения рациональных режимов резания, правильного выбора характеристики шлифовального круга и применения технологической СОЖ.
|