Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Температуропроводность.




На практике часто используется такой коэффициент, как температуропроводность, который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r),когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

При разработке мы можем использовать процессы, в которых возможно возникновение внутреннего источника тепла (например, закачка кислоты), в таком случае уравнение будет выглядеть так:

dТ/dt=а×Ñ2Т+Q/(с×r),

где Q – теплота внутреннего источника тепла, r - плотность породы.

17. Тепловые свойства нефтегазового пласта

Тепловыми свойствами являются:

Коэффициент теплоёмкости с

Коэффициент теплопроводности l

Коэффициент температуроппроводности а

1. Теплоёмкость (с) - количество теплоты, необходимое для повышения температуры вещества на один градус при заданных условиях (V, Р=соnst).

с=dQ/dТ

2. l [Вт/(м×К)] характеризует свойство породы передавать кинетическую (или тепловую) энергию от одного элемента к другому.

Коэффициент теплопроводности – количество тепла, проходящее за единицу времени через кубический объём вещества с гранью единичного размера, при этом на других гранях поддерживается разница температур в один градус (DТ=1°).

3. температуропроводность, который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r), когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

18. Теплоемкость пород нефтегазового пласта при многофазовом насыщении

Теплоёмкость:

с – количество теплоты, необходимое для повышения температуры вещества на один градус при заданных условиях (V, Р=соnst).

с=dQ/dТ

Средняя теплоёмкость вещества: с=DQ/DТ.

Т.к. образцы породы могут иметь разную массу, объём, то для более дифференцированной оценки вводятся специальные виды теплоёмкости: массовая, объёмная и молярная.

· Удельная массовая теплоёмкость [Дж/(кг×град)]:

Сm=dQ/dТ=С/m

Это количество теплоты, необходимое для изменения на один градус единицы массы образца.



· Удельная объёмная теплоёмкость [Дж/(м3×К)]:

Сv=dQ/(V×dТ)=r×Сm,

где r - плотность

Количество теплоты, которое необходимо сообщить единице для повышения её на один градус, в случае Р, V=соnst.

· Удельная молярная теплоёмкость [Дж/(моль×К)]:

Сn=dQ/(n×dТ)=М×Сm,

где М – относительная молекулярная масса [кг/кмоль]

Количество теплоты, которое надо сообщить молю вещества для изменения его температуры на один градус.

Теплоёмкость является аддитивным свойством пласта:

Сi=j=1Nj×Кi, где SКi=1, К – количество фаз.

Теплоёмкость зависит от пористости пласта: чем больше пористость, тем меньше теплоёмкость.

(с×r)=сск×rск×(1-kп)+сз×rз×kп,

где сз – коэффициент заполнения пор;

kп – коэффициент пористости.

19. Теплопроводность и температуропроводность минералов и нефтегазовых пластов. Явление анизотропии теплопроводности

Теплопроводность.l [Вт/(м×К)] характеризует свойство породы передавать кинетическую (или тепловую) энергию от одного элемента к другому.

Коэффициент теплопроводности – количество тепла, проходящее за единицу времени через кубический объём вещества с гранью единичного размера, при этом на других гранях поддерживается разница температур в один градус (DТ=1°).



Коэффициент теплопроводности зависит от:

минирального состава скелета. Разброс значений коэффициентов может достигать десяти тысяч раз.

степени наполненности скелета.

Теплопроводности флюидов.

Температуропроводность, который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r), когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

При разработке мы можем использовать процессы, в которых возможно возникновение внутреннего источника тепла (например, закачка кислоты), в таком случае уравнение будет выглядеть так:

dТ/dt=а×Ñ2Т+Q/(с×r), где Q – теплота внутреннего источника тепла, r - плотность породы.

20. Явление теплового расширения нефтегазового пласта

Тепло, которое поглощается породой, расходуется не только на кинетические тепловые процессы, но и на совершение механической работы, она связана с тепловым расширением пласта. Это тепловое расширение связано с зависимостью сил связи атомов в решётке отдельных фаз от температуры, в частности появляющаяся в направленности связей. Если атомы легче смещаются при удалении друг от друга, чем при сближении, происходит смещение центров колющихся атомов, т.е. деформация.

Связь между ростом температуры и линейной деформацией может быть записана:

dL=a×L×dТ,

где L – первоначальная длина [м], a - коэффициент линейного теплового расширения [1/град].



dL/L=a×dТ

Аналогично для объёмного расширения:

dV/V=gт×dТ,

где gт – коэффициент объёмной тепловой деформации.

 

Поскольку коэффициенты объёмного расширения сильно различаются для разных зёрен, то в процессе воздействия произойдут неравномерные деформации, что приведёт к разрушению пласта.

В точках соприкосновения происходит сильная концентрация напряжений, следствием чего является вынос песка и соответственно разрушение породы.

g1

g3 g2

g4

 

 

Сейчас часто используется механизированный способ разработки, в результате чего частицы породы попадают в насосы, вызывая аварийные ситуации.

Явление вытеснения нефти и газа также связано с объёмным расширением. Это так называемый процесс Джоуля-Томпсона. При эксплуатации происходит резкое изменение объёма, возникает эффект дросселирования (теплового расширения с изменением температуры). Термодинамическая дебитометрия основана на изучении этого эффекта.

 

Введём ещё один параметр – адиабатический коэффициент: hs=dТ/dр.

Дифференциальный адиабатический коэффициент определяет изменение температуры в зависимости от изменения давления.

Величина hS>0 при адиабатическом сжатии. При этом вещество нагревается. Исключением является вода, т.к. в интервале от 0¼4° она остывает.

 

Величину hS можно рассчитать следующим образом:

hS=V/(Ср×g)×a×Т,

где V – объём, Т – температура, a - коэффициент линейного расширения, g – ускорение свободного падения.

21 Физическое состояние углеводородных систем в нефтегазовых пластах

Возьмём простое вещество и рассмотрим диаграмму состояния:

Р

С

Ж

Г

 

Т

 

Точка С является критической точкой, в которой различие между свойствами исчезает.

Давление (Р) и температура (Т), которые характеризуют пласт, могут измеряться в очень широком диапазоне: от десятых МПа до десятков МПа и от 20-40° до более, чем 150°С. В зависимости от этого наши залежи, в которых находятся углеводороды, могут быть разделены на газовые, нефтяные и т. д.

Т.к. на различных глубинах давления меняются от нормальных геостатических до аномально высоких, то углеводородные соединения могут находиться в газообразном, жидком или в виде газожидкостных смесей в залежи.

При высоких давлениях плотность газов приближается к плотности лёгких углеводородных жидкостей. В этих условиях тяжёлые нефтяные фракции могут растворяться в сжатом газе[1]. В результате нефть будет частично растворена в газе. Если количество газа незначительно, то с ростом давления газ растворяется в нефти. Поэтому в зависимости от количества газа и его состояния выделяются залежи:

1. чисто газовые;

2. газоконденсатные;

3. газонефтяные;

4. нефтяные с содержанием растворённого газа.

Граница между газонефтяными и нефтегазовыми залежами условна. Она сложилась исторически, в связи с существованием двух министерств: нефтяной и газовой промышленности.

 

22 Типы залежей по состоянию углеводородных систем

· Газовые

· Газоконденсатные

· газонефтяные, газовые нефти с нефтяной оторочкой

· нефтяные с газовой шапкой, нефтяные месторождения

· в которых газ находится в растворенном состоянии.

+21 вопрос

23 Состав и классификация нефтей

Нефть – жидкая смесь жидких углеводородов и неуглеводородных компонентов.

3 основных класса:

метановый Сn H2n+2

алкановый CnH2n

циклоалкановый CnH2n .

Меркоптаны - R – SH – аналогичные спиртам.

Асфальтены – близки к смолам. Представляют собой полициклические соединения, содержащие серу и бензин.

Нефти делятся на классы и подклассы.

По количествы серы – 3 класса.

Малосернистые, <0.5%

Сернистые, 0,5 – 2%

Высокосернистые, >2%

По содержанию смол:

Малосмолистые, <18%

Смолистые, 18 – 35%

Высокосмолистые, >35%

По содержанию парафина:

Малопарафинистые, <1,5%

Парафинистые, 1,5 – 5%

Высокопарафинистые, >6%

Есть нефти с содержанием парафина >35%.

24 Состав и классификация природных газов

Состав природных газов.

Природные газы – это смесь газообразных углеводородов и неуглеводородных компонентов.

N2, CO2, H2S, RSH, He, Ar, Kr, Xe.

Метан, этан, этилен (С2Н4) – газы при обычных условиях.

Пропан, н.бутан, изобутан – при нормальных условиях – парообразные, при повышении давления – жидкости.

Углеводороды, начиная с С5Н12, – входят в бензиновую фракцию газов.

Сухой газ – метан, этан, этилен

Жидкий газ – пропан, пропилен, изобутан, бутилен.

Бензин газовый – это изопентан, нормальный пентан, гексан и т.д.

Газы подразделяются на три группы:

1) добываемые из газовых месторождений – сухой газ.

2) добываемые вместе с нефтью – физические смеси, сохой газ,

жидкий газ, газовый бензин.

3) добываемые из газоконденсатных месторождений – смеси сухого газа и жидкого углеводородного конденсата. Конденсат состоит из большего числа углеводородов.

Закономерности изменения состава углеводородных смесей в зависимости от термобарических условий залегания

 

27 Фазовые диаграммы одно- и двухкомпонентных систем

Диаграмма состояния многокомпонентного газа.

В отличие от чистого вещества для многокомпонентных сис­тем изменение объема в двухфазной области сопровождается и изменением давления (рис. 2.3, а). Для полного испарения жидкости необходимо непрерывно понижать давление и, наоборот, для полной конденсации газа надо непрерывно повышать давление. Поэтому давление точки начала парообразования для многокомпонентной системы выше давления точки начала кон­денсации и при перестроении диаграммы фазовых состояний в координатах давление — температура кривые точек начала ис­парения и точек росы не совпадают. По сравнению с фазовой диаграммой чистого вещества диаграмма в этих координатах имеет вид петли (рис. 2.3,6). Кривая точек начала парообразо­вания, являющаяся границей, разделяющей области жидкого и двухфазного состояний вещества, и кривая точек росы, отделя­ющая двухфазную область от области парообразования, соеди­няются в критической точке С. В данном случае критическая точка не является точкой максимального давления и темпера­туры, при которых одновременно могут существовать две фазы, но, как и в случае чистого вещества в критической точке плот­ность и состав фаз одинаковы.

При движении нефти и газа в пласте, стволе скважины, сис­темах сбора и подготовки меняются давление и температура, что обусловливает изменение фазового состояния углеводоро­дов — переход из жидкого в газообразное состояние и наобо­рот. Так как нефть и газ состоят из большого числа разнооб­разных по своим свойствам компонентов, то при определенных условиях часть этих компонентов может находиться в жидкой фазе, а другая — в паровой (газовой) фазе

28 Характеристика природных газовых смесей


Дата добавления: 2015-04-21; просмотров: 24; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.017 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты