Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Гиперболоиды




При вращении гиперболы вокруг одной из ее осей сим­метрии получается поверхность, называемая гиперболоидом вращения. Выбор оси вращения влияет на тип гиперболоида. Бели осью вращения является действительная ось симметрии гиперболы, то поверхность вращения будет состоять из двух частей (полостей). Это двуполостный гиперболоид вра­щения (. При вращении гиперболы вокруг ее мнимой оси симметрии поверхность будет состоять из одной полости. Такую поверхность называют однополостным гиперболоидом вращения.

Для вывода уравнений гиперболоидов вращения расположим прямоугольную систему координат так, чтобы ось вращения, являющаяся осью симметрии гиперболы, совпадала с осью аппликат а сама гипербола располагалась в координатной плоскости с центром в начале системы координат.

Для случая двуполостного гиперболоида вращения уравне­ние гиперболы будет иметь вид

4 *

Заменив в нем на ,получим уравнение

В случае однополостного гиперболоида вращения гипербола будет описываться уравнением

Опять меняем на радикал : получаем

I —

уравнение однополостного гиперболоида вращения.

Гиперболоиды вращения преобразованием сжатия к коор­динатной плоскости Ош превращаются в двуполостный и однополостный гиперболоиды общего вида. При коэффи­циенте сжатия их уравнениями будут соответственно

После переобозначений параметров эти уравнения преобразу­ются в каноническое уравнение двуполостного

и однополостного гиперболоидов

Как видно из уравнений оба гиперболоида явля­ются поверхностями второго порядка.

*


Поделиться:

Дата добавления: 2015-05-08; просмотров: 133; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты