КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Круги Эйлера-ВеннаИз определения вытекает, что равные множества и отношения с множествами удобно иллюстрировать при помощи графических схем, в которых множества представляются в виде кругов, овалов или любых других геометрических фигур и предполагается, что в этих геометрических фигурах заключены все элементы данного множества. Такие геометрические фигуры называются кругами Эйлера, по имени немецкого математика Леонарда Эйлера, который в 1762 году приспособил эту геометрическую фигуру для логических целей. Например, отношение включения между множествами А = {a, b, c, d, e} и В = {c, e, d} можно изобразить при помощи кругов Эйлера так: Множества А = {a, b, c, d, e} и B = {b, d, k, e} Пересекаются, но ни одно из них не является подмножеством другого, поэтому при помощи кругов Эйлера они изображаются так: Непересекающиеся множества изображают при помощи двух кругов, не имеющих общих точек. Установить отношения между множествами – важное умение для учителя. Дело в том, что математика и другие науки изучают не только определенные объекты и явления, но и взаимосвязи, в том числе и отношения между множествами. Выясним, например, как связаны между собой множества А четных чисел и множество В чисел, кратных 4. В каком из случаев, представленных на рисунках, отношения между данными множествами изображены верно? Из рисунка следует, что все четные числа делятся на 4, что не верно: можно назвать числа, которые не делятся на 4, например 14. Этот контрпример сразу делает невозможным равенство данных множеств, т.е. случай представленный на следующем рисунке: Следующий рисунок говорит о том, что среди чисел, кратных 4, есть четные, но есть и такие, которые не делятся на 2, что не верно: нетрудно доказать, что любое число, кратное 4, четно. Следовательно, множество чисел, кратных 4, является подмножеством множества четных чисел. Эта связь изображена на последнем рисунке. Так же как и понятие множества, понятие подмножества в начальной школе в явном виде не изучается, но задач, связанных с выделением части некоторой совокупности, учащиеся решают много. Например «Среди данных четырехугольников укажи прямоугольники». «Назови среди данных чисел четные» и т. д.
|