КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Чего не объясняет волновая теорияКак отмечалось выше, рассеяние медленных электронов описывают в терминах брэгговского отражения, которое подразумевает объёмное взаимодействие волн с трёхмерной атомной решёткой. Однако, имеются свидетельства о том, что это рассеяние обусловлено не объёмным, а поверхностным взаимодействием. Перечислим самые, на наш взгляд, показательные [4]: 1. При уменьшении скорости падающих электронов должна уменьшаться их глубина проникновения в кристалл, и, соответственно, должен уменьшаться эффективный рассеивающий объём кристалла, т.е. должна уменьшаться резкость дифракционных пучков. “Опыт этого, однако, не показывает… наблюдение дифракции в низких вольтах, как раз наоборот, чрезвычайно облегчается, и при малых энергиях оказывается возможным получение наиболее резких пучков”. 2. Допущение разумного коэффициента поглощения потока электронов при углублении в кристалл “даёт, что количество электронов, рассеянных даже вторым атомным слоем кристалла, должно быть… меньше количества рассеянных первым слоем”, как минимум, на порядок. “При этом делается непонятным само возникновение резких максимумов”. 3. “Нанесение на рассеивающий кристалл плёнки другого металла в два атомных слоя всегда вызывает практически полное исчезновение первоначальной картины”. Этот факт, казалось бы, прямо указывает число поверхностных атомных слоёв, ответственных за обратное рассеяние медленных электронов, что, фактически, отрицает концепцию рассеяния на объёмной решётке. Изложив эти факты в пользу поверхностного взаимодействия, С.Г.Калашников предположил [4], что рассеяние медленных электронов происходит в результате их зеркального отражения от поверхностных кусочков атомных плоскостей; в случае с монокристаллом никеля – от боковых граней тетраэдров, образованными атомами первого и второго слоёв. В рамках этой модели, однако, трудно объяснить, почему рассеяние имеет резонансы в зависимости от энергии падающих электронов, а также почему отражения при различных резонансных энергиях происходят в различных направлениях. К тому же непонятно, каким образом отражение от боковых граней поверхностных тетраэдров может породить возвратный пучок рассеяния, на который приходится подавляющая часть всех рассеянных электронов [1,3]. Кстати, происхождение возвратного пучка непонятно и в рамках волнового подхода. Если считать возвратный пучок результатом брэгговского отражения от атомных плоскостей, параллельных поверхности среза, то усиливающая интерференция должна иметь место лишь для выделенных энергий электронов, и, соответственно, интенсивность возвратного пучка должна представлять собой набор резонансов. Но этого, судя по диаграммам рассеяния, не наблюдается. Кроме того, если считать, что электроны обладают волновыми свойствами, то непонятны ещё два различия между свойствами дифракционных пиков электронных и рентгеновских волн. Электронные пики, по сравнению с рентгеновскими пиками для тех же длин волн, имеют существенно большую угловую ширину [1] и много большую энергетическую ширину. Делавшиеся попытки объяснения этих различий оказались уязвимы для критики. Так, в качестве энергетически уширяющего фактора назывались тепловые колебания кристаллической решётки – как будто этот фактор воздействует лишь на электронные волны, но не воздействует на волны рентгеновские. Учитывая вышеизложенное, можно видеть, что в рамках волнового подхода не объясняется целый ряд особенностей рассеяния медленных электронов. О каком же “блестящем подтверждении” волновой теории может идти речь Результаты Дэвиссона и Джермера (рис.1.2), по-видимому, являются частным случаем явления, хорошо известного специалистам по низковольтной электронографии: “С изменением энергии падающих электронов дифракционные картины появляются и исчезают, сменяя друг друга. С увеличением энергии, например, вначале на общем фоне появляются слабые симметрично расположенные пятна-рефлексы, которые разгораются до максимальной яркости, а затем их яркость ослабевает, и рефлексы исчезают на ярком фоне. При дальнейшем увеличении энергии появляются рефлексы в других позициях и также проходят через максимум яркости при определённой энергии” [5]. Но не менее хорошо известно, что эти сменяющие друг друга дифракционные картины, как правило, не согласуются с предсказаниями волновой теории. Некоторые пики, которые должны наблюдаться в согласии с этой теорией, отсутствуют вовсе, а, кроме того, всегда наблюдаются избыточные пики [6-8], которым приписывают дробные (!) порядки дифракции. Это означает полный отказ от концепции брэгговского отражения, на которой основана теория дифракции “электронных волн”. 1.3. Рассеяние медленных электронов: вторичная электронная эмиссия Итак, совокупности резонансных пиков при рассеянии медленных электронов и рентгеновских лучей с теми же длинами волн, вообще говоря, существенно отличаются друг от друга. Проще всего допустить, что различны механизмы взаимодействия с мишенью у первичных пучков – электронного и рентгеновского. Вспомним, что при бомбардировке поверхности медленными электронами происходит вторичная электронная эмиссия [9] – результат неволнового взаимодействия падающих электронов с мишенью. Возможно ли объяснить резонансы рассеяния медленных электронов на основе этого неволнового взаимодействия? Мы считаем - возможно; кратко обсудим это. Заметим: в рамках вторично-эмиссионного подхода, электронограммы свидетельствуют не о тех же деталях структуры мишени, о которых свидетельствуют рентгенограммы. Если рентгенограммы говорят, действительно, о компоновке атомов в кристалле, то электронограммы, как мы полагаем, говорят о компоновке атомарных электронов – энергии связи которых сравнимы с энергией падающих электронов. При энергиях в несколько десятков электронвольт падающие электроны должны наиболее эффективно взаимодействовать не с электронами внешних (оптических) или самых внутренних (рентгеновских) оболочек, а с электронами промежуточных оболочек, энергии связи которых соответствуют диапазону вакуумного ультрафиолета. При неупругом ударе по атомарному электрону возможны два главных сценария. Если не происходит резонансного выбивания электрона из атома, то поглощённая энергия диссипируется тем или иным способом. Если же резонансное выбивание электрона происходит, то этот электрон с большой долей вероятности даёт вклад в резонанс вторичной электронной эмиссии. Кратко рассмотрим, насколько вторично-эмиссионный подход согласуется с особенностями рассеяния медленных электронов. Прежде всего, в рамках этого подхода ускоряющие напряжения, при которых наблюдаются резонансы, должны соответствовать системе энергетических уровней электронов в атомах мишени. Подтверждается ли это при рассеянии медленных электронов? К сожалению, до сих пор практически отсутствуют данные об энергетических уровнях электронов с промежуточных оболочек неионизированных атомов – из-за технических трудностей, с которыми сталкивается спектроскопия вакуумного ультрафиолета [10]. При таком положении дел, наличие искомого соответствия, конечно, не подтверждается – но и не опровергается. Далее, что касается вопроса о том, почему резонансы рассеяния медленных электронов имеют характерные выделенные направления, то обратим внимание на следующее. В монокристаллах не только упорядочено расположение атомов, но и, более того – упорядочена их ориентация: в идеальном кристалле атомы ориентированы одинаково. Уточним, что речь идёт об ориентации не “спинов”, а именно атомов. Смысл, который мы вкладываем в понятие “ориентация атома”, основан на предположении о том, что атомарные электроны не находятся в орбитальном вращении вокруг ядра, а пребывают в “частотных гнёздах” [11,12], пространственная компоновка которых в атоме, по крайней мере, для заполненных оболочек, довольно жёстко задана. При этом “одинаковая ориентация атомов” означает, что у них сонаправлены радиус-векторы, соединяющие центры атомов с центрами одинаковых “частотных гнёзд”. Логично допустить, что именно с этими радиус-векторами связаны направления вылета резонансно выбиваемых электронов. Для случая монокристалла-мишени это объясняло бы, почему резонансно выбиваемые электроны вылетают в выделенных направлениях. Если верно вышеизложенное, то низковольтная электронография – это уникальный способ исследования пространственно-энергетической структуры промежуточных электронных оболочек. Наконец, остановимся на вопросе о большой энергетической ширине резонансов при рассеянии медленных электронов. Поверхность среза монокристалла практически невозможно сделать идеально плоской, как это показано на рис.1.1. В реальности лишь часть поверхности образована атомами первой плоскости; остальная её часть образована атомами следующих плоскостей, в лучшем случае – только второй. Поскольку избыточные электроны, как известно, концентрируются на выдающихся участках поверхности, то, на микроуровне, поверхность среза монокристалла отнюдь не является эквипотенциальной. Соответственно, величина поверхностного потенциального барьера (работа выхода) различна на “пригорках” и на “долинах”, причём справочные значения работы выхода приводятся, конечно же, для “пригорков”, где потенциальный барьер минимален. Теперь заметим, что падающие электроны проникают сквозь поверхность и на “пригорках”, и на “долинах”. Поэтому, даже если падающие электроны строго монокинетичны, то при проникновении в кристалл они приобретают разброс по энергиям, соответствующий разбросу величины потенциального барьера. Отсюда прямо проистекает разброс энергий неупругих ударов по атомарным электронам, а, значит, и энергетическое уширение резонансных пиков рассеяния; причём, их результирующая ширина в 11 электронвольт, которую обнаружили Дэвиссон и Джермер, не представляется нам чрезмерной. Итак, вторично-эмиссионный подход объясняет, по крайней мере, качественно, те особенности рассеяния медленных электронов, которые остаются необъяснёнными в рамках волнового подхода. В самом деле: 1. Вторично-эмиссионный подход находится в согласии с фактами, однозначно говорящими о том, что взаимодействие падающих электронов с мишенью является поверхностным – а не объёмным, как требует волновая теория. 2. В рамках вторично-эмиссионного подхода, электронограммы свидетельствуют о пространственно-энергетической структуре промежуточных электронных оболочек в атомах – а не о компоновке атомов в кристалле, о которой свидетельствуют рентгенограммы. Поэтому легко объясняется, почему картины рассеяния электронов и рентгеновского излучения – при, казалось бы, одинаковых условиях дифракции – существенно отличаются друг от друга. 3. Вторично-эмиссионный подход даёт разумное объяснение большому энергетическому уширению пиков рассеяния медленных электронов, по сравнению с пиками рассеяния рентгеновского излучения. Источник этого уширения – разброс величины потенциального барьера на поверхности мишени. Следует обратить внимание: этот фактор, действительно, должен воздействовать на электроны, но не должен – на рентгеновское излучение.
|