КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Выбор эффективной системы охлажденияВ первую очередь посмотрим, что из себя представляет система охлаждения современного серверов, и каких видов она бывает Устройства охлаждения, применяемые для различных элементов компьютера, являются очень важной частью всей системы, а потому отсутствие должного внимания и знаний при выборе кулера может привести к значительному снижению отказоустойчивости сервера в целом. То, что сервер, который приобретается в собранном виде, уже оснащен как минимум двумя кулерами, еще не гарантирует должного охлаждения, а, следовательно, бесперебойной работы. Следует помнить, что значительное число всякого рода отказов, зависания программ и операционной системы, несанкционированная перезагрузка, заметное снижение производительности сервера, повышенный шум, отказ включаться с первого раза – все это может быть признаком неправильного выбора кулера. Причем в данном аспекте под кулером следует понимать не просто моторчик с вентилятором, а всю систему охлаждения того или иного модуля. Эта система состоит из рассеивающей части, которая чаще всего представлена радиаторами различной формы и размера, а также из устройства обеспечения воздушного потока или конвенции, которые представлены, как правило, многолопастными вентиляторами или крыльчатками. Это так называемая активная воздушная система охлаждения, которая на сегодняшний день используется в 90% компьютеров в мире. Ее достоинства — невысокая сложность установки и небольшая стоимость (в сравнении с более сложными системами охлаждения). Недостатки — шум, уровень которого зависит от выбранных вентиляторов, т.е. от их размеров, технических характеристик, производителя, марки. Бывают и более простые системы охлаждения, называемые пассивными. Применяются они только тогда, когда возможно их безопасное применение. Они состоят только из радиатора. Единственным плюсом в них считается идеальная тишина и относительно легкое обслуживание, которое заключается в периодическом удалении пыли из радиатора. Но эффект от такого охлаждения очень и очень невелик, а увеличить его можно лишь только за счет увеличения размеров радиатора, что не всегда возможно в условиях ограниченного пространства корпуса системного блока, да и габариты других его компонентов зачастую мешают это сделать. Прошло уже то время, когда экзотикой считались кулеры на тепловых трубках. Они весьма эффективны уже в силу своей конструкции, так как отводит тепло не простым механическим контактом, а за счет свойств жидкого охлаждающего агента. Во всех случаях, когда обычные кулеры не удовлетворяют поставленным требованиям, есть смысл в применении кулеров на тепловых трубках. Единственным их недостатком является повышенная цена, но это с лихвой компенсируется идеальным балансом между малым шумом и высокой эффективностью. Бывают и более сложные, чем воздушные, это активные жидкостные системы охлаждения, включающие в себя систему помп и трубопроводов, по которым непрерывно циркулирует жидкость (обычно это вода). Такая система очень эффективна, малошумна, но большая стоимость и высокая сложность монтажа — не всем подходит. Да и опасность ее разгерметизации, влекущая за собой попадание жидкости на электронные компоненты, и как следствие, короткое замыкание и выход их строя, порой говорят не в ее пользу при выборе. Ну и еще более серьезная система охлаждения, такая же, как и жидкостная, но в ней используется жидкий азот. Эффективность ее на самом высочайшем уровне! Стоимость, чрезвычайная сложность монтажа и обслуживания — тоже! То есть, во всех случаях, система охлаждения должна состоять из радиаторов и, собственно, конкретного способа его охлаждения. Рассмотрим нюансы выбора воздушной активной системы охлаждения В любом случае при выборе кулера, как для процессора, так и для блока питания или для охлаждения массива жестких дисков, всегда возникает определенный компромисс между шумовым давлением приборов охлаждения и их эффективностью. Причем иногда важнее оказывается эффективность прибора, а иногда не менее важным оказывается низкий уровень шума. Так, для серверов, в задачу которых входит длительная, непрерывная и бесперебойная работа, важнее эффективность кулера. Шумом можно либо пренебречь, либо установить такой сервер в отдельном помещении, где шумовая нагрузка не будет иметь большого значения. Для серверов же, работающих в жилых помещениях, на звуковых студиях и в медицинских учреждениях, низкий уровень шума бывает важен. Самым важным «проблемным» параметром, от которого зависит как создаваемый кулером шум, так и его эффективность в качестве элемента охлаждения, является оборотистость вентилятора. Чем больше оборотов в минуту (RPM) делает мотор и лопасти вентилятора, тем выше уровень шума, но тем большее количество воздуха прогоняет система, а, следовательно, выше ее эффективность. Можно смело утверждать, что уровень шума зависит от оборотов на полных 80 процентов. Остальные 20 процентов приходятся на конфигурацию лопастей вентилятора, а также на другие элементы охлаждения, рассекающие воздушный поток и приводящие к образованию вихрей. Также возможны и чисто механические шумы в подшипниках. Необходимо отметить, что самым надежным и идеальным вариантом для вентиляторов являются подшипники качения, или, как их еще называют, шарикоподшипники. Преимущества их перед подшипниками скольжения несомненны: это повышенная износостойкость и, как следствие, более долгий срок службы. Ведь смазка в подшипниках скольжения, высыхая препятствует нормальному вращению вентилятора, что замедляет его работу, и в конце концов приводит к выходу его из строя. Такие кулеры просто не нужно приобретать, отсеивая их при выборе. Также, легенда о том, что шум подшипников можно устранить смазкой, не подтверждается практикой. Наоборот, как правило, разборка вентилятора и внесение смазки усиливают шум, а не снижают его, что подтверждается объективными замерами шумового давления. Допустимым принято считать уровень шума от 30 до 40 Дб, но комфортным и желательным все же считается шум громкостью не более 30 Дб. Немаловажно, что уровень шума напрямую зависит и от диаметра вентилятора, ведь у больших кулеров диаметром 120-140 мм на самых малых оборотах производительность такая же, как у небольших вентиляторов диаметром 80-90 мм, работающих на самых больших оборотах. Понятно, какой из этих вентиляторов будет громче «шуметь» — тот, у которого больше скорость вращения. Точное число оборотов вентилятора не указывается в его маркировке, а отображается либо литерами L, M, H, означающих «низкие», «средние» и «высокие», либо делится на классы по рабочему току. При важности эффективного охлаждения следует выбирать кулеры с высокими оборотами, а при необходимости малого шума – с низкими. Но не следует забывать о понижении эффективности охлаждения в этом случае. Компромисс между шумом и эффективностью можно частично решить за счет применения более эффективных радиаторов с менее шумящими вентиляторами. Здесь на первое место выходят такие параметры радиаторов, как их масса, геометрия и материал изготовления. Следует помнить, что медный радиатор заметно эффективнее алюминиевого, но и дороже его, тяжелый эффективнее, но занимает больше места, а радиатор с очень рассеченной геометрией (обилием тонких ребер большой площади) тоже эффективнее, но очень быстро и плотно запылится. Это необходимо учитывать, так как, выбрав подобный радиатор, вместо эффективности можно получить перегрев, стоит лишь прозевать момент образования толстой «шубы» из пыли. Несколько рекомендаций по выбору систем охлаждения для процессоров: а) Если в ваши планы не входит разгон ЦП, эксперименты с повышением его производительности, и вам неважен уровень шума, издаваемый вашим сервером, можно не задумываться и приобрести любой кулер в пределах 200-400 рублей (алюминиевый радиатор плюс простенький вентилятор диаметром 80 мм). Еще проще, если вы приобрели процессор вместе с кулером (комплектация «BOX»); б) Для более производительных систем, рассчитанных на игры и разный мультимедийный контент, желательно приобрести кулер посерьезнее, состоящий из медного или медно-алюминиевого радиатора и тепловых трубок, а также качественного малошумного вентилятора. Стоимость его — порядка 400-900 рублей; в) Самые дорогие (от 1000 руб. и выше) и массивные (и по весу, и по размерам) кулеры, предназначенные для охлаждения самых «горячих» — разогнанных процессоров. Альтернативой им могут служить СВО (системы водяного охлаждения), но из-за большой (до 10000 рублей и выше) цены и определенных трудностей, связанных с установкой и обслуживанием, они используются только профессионалами и то крайне редко. Само собой, при выборе особое внимание необходимо уделить совместимости кулера с процессором и с материнской платой. И хотя рекомендации, приведенные выше, больше подходят для выбора процессорных кулеров, но где-то их можно применить и при выборе способов и систем охлаждения процессоров видеокарт,чипсетов, микросхемоперативной памяти, и, конечно, самого системного блока. И последнее, следует обращать внимание на производителей приобретаемых кулеров. Самыезнаменитыеипопулярныебренды — Noctua, ArcticCooling, Zalman, Thermaltake, Xilence, CoolerMaster, Scythe.
1.6 Иммерсионное жидкостное охлаждение для Охлаждение методом прямого погружения помогает поддерживать нужную температуру для серверов и прокладывает путь для следующего поколения ультра-плотных систем. Не воздух и не вода, а масло – будущее ЦОДов. Размещение серверов в ЦОДах становится более плотным и приводит к увеличению температуры в стойках. Погружение в жидкий хладагент может заменить традиционные методы воздушного охлаждения для дата-центров и больших серверов с высокой плотностью. Для современных серверов требуется множество вентиляторов, чтобы направлять большие потоки воздуха в сторону горячих компонентов по тщательно выверенным коридорам в каждом корпусе. Но вентиляция наращивает энергопотребление системы и значительно увеличивает шумы, а также риски. Из-за отказов вентиляторов на объекте могут возникнуть проблемы. Создатели современной конструкции процессоров работают над тем, чтобы снизить энергопотребление и выделяемое тепло, но становится ясно, что традиционные системы охлаждения воздуха ограничивают потенциальную плотность процессоров и систем. Конструкторы надеются преодолеть ограничения воздушного охлаждения, предлагая погрузить оборудование серверов или других систем непосредственно в жидкость. Непосредственное охлаждение методом погружения − новая технология, способная произвести революцию в отрасли дата-центров, но эта она требует компромиссов. Необходимо рассмотреть внимательнее все «за» и «против», возможную пользу и требования, необходимые для ее поддержки. Жидкость – отличная охлаждающая среда, потому что она гораздо плотнее воздуха, а плотные носители в целом облегчают изменения тепловой энергии. Циркулирующая в дата-центрахчиллерная вода была одним из основных хладоносителей в теплообменниках на протяжении долгого времени. Но воду и электричество нельзя смешивать. Вода проводит электрический ток и вызывает коррозию. Нарушения в водяном контуре может иметь разрушительные последствия для систем и сооружений. Эти доводы тормозят развитие водного охлаждения в дата-центрах большинства провайдеров. Новый метод заключается в выборе других жидкостей для системы охлаждения. Обычная вода заменяется на другое вещество, непроводящее ток и неагрессивное к покрытиям, например, минеральное масло или различные смеси (такие, как продукт 3М компании Novec или GreenDEF компании GreenRevolutionCooling). Выбранный состав позволяет напрямую погрузить горячие компоненты (или всю систему целиком) для более эффективного охлаждения без повреждения компонентов или изменения электромагнитных характеристик чувствительных электронных схем. Есть два основных подхода к жидкостному охлаждению методом погружения: простое и двухфазное охлаждение. Простой охлаждение основано на принципе полного погружения серверов в ванну с охлаждающей жидкостью. Тепло от процессора, элементов памяти, жестких дисков и других устройств поглощается жидкостью, которая циркулирует с помощью обычного чиллера или другого теплообменника и поддерживает температуру на нужном уровне.
Рисунок 5 – Схема работы чиллера Иммерсионные системы (такие как CarnotJet от GreenRevolutionCooling) − это простой и эффективный процесс. Некоторые системы основаны на циркуляции охлаждающей жидкости через индивидуальные защищенные лопасти, а не погружении целой стойки. Один из производителей таких систем, LiquidCoolSolutions, прокладывает систему через массив серверных модулей и создает общую петлю циркуляции. Двухэтапный подход к жидкостному охлаждению используется в таких системах, как Immersion-2 от компании AlliedControl. Серверы и другое оборудование находятся в наполненной ванне. Выбранная этим производителем жидкость, неагрессивная и не проводящая ток, имеет гораздо более низкий температурный порог для кипения - обычно близкий к 49’C по Цельсию (около 120’ по Фаренгейту). Тепло от серверного процессора и других компонентов заставляет жидкость кипеть. Температура снижается, когда появившийся пар конденсируется вокруг охлажденной катушки или другого конденсатора для сбора и повторного использования жидкости. Предполагаемое преимущество двухфазного охлаждения – высокая эффективность. Хладагент не нужно подкачивать дополнительно, поскольку циркуляция идет пассивно. Это означает, что не требуется насос для перемещения массы охлаждающей жидкости, которая остается в защищенном резервуаре. Пар конденсируется на локальном конденсаторе. Необходимый уровень температуры в конденсаторе поддерживается с помощью обычной охлажденной воды. Для поддержки такой системы нужно гораздо меньше энергии, чем в других конструкциях, а цикл с фазами трансформации жидкости-пар-жидкость перерабатывает огромное количество тепла. 1.6.1 Очевидные преимущества Погружное жидкостное охлаждение гарантирует ряд важных преимуществ для ЦОДов следующего поколения. Эффективность жидкостного охлаждения состоит в том, что плотность серверов можно наращивать больше, чем в дата-центрах с воздушным охлаждением и избегать риска горячих точек, вызванных неправильным распределением или блокировкой воздушных потоков для обычных стоек. Хотя современные серверы совместимы с погружным жидкостным охлаждением, технология имеет огромный потенциал для сред высокопроизводительных вычислений (HPC), которые создают крупные блоки оборудования в высокопроизводительных серверах – от 30 кВт до 100 кВт на стойку – там, где воздушное охлаждение непрактично. Вторым преимуществом является то, что процесс имеет длительный цикл. Неисправность в воздушной системе охлаждения ЦОДа, как правило, вызывает перегрев оборудования за считанные минуты. Большинство дата-центров реагирует на такие ситуации, меняя нагрузки или отключая системы в установленном порядке до тех пор, пока не сработают устройства бесперебойного питания и другие резервные системы. Погружное жидкостное охлаждение сохраняет нужную температуру среды в течение более длительных периодов в случае поломки насоса. Двухфазное погружное охлаждение пассивно по своей природе, не требут никакого насоса для контейнера с жидкостью. Снижение затрат часто приводится в качестве третьего и главного преимущества жидкостного охлаждения. Как правило, снижаются расходы на электроэнергию для охлаждения, не нужно приобретать и поддерживать эксплуатацию вентиляторов, а также в серверном зале освобождается место, ранее занимаемое воздушной системой охлаждения. Дата-центру потребуются упрощенные серверные компоненты. «Поставщики DLC [directliquidcooling] утверждают, что прямое жидкостное охлаждение снижает затраты до 40% и ниже, − заявляет Эндрю Донохью, научный руководитель европейской аналитической группы отрасли ЦОДов исследовательской компании 451 Research. – Кроме того, из-за отсутствия вентиляторов исчезает шум и вибрации, которые нередко бывают источником сбоев в серверах». 1.6.2 Минусы инновации Погружное жидкостное охлаждение также имеет ряд недостатков. Возможно, самая большая проблема состоит в том, что большинство современных стоек ЦОДов не загружены настолько и не используют энергию в таких масштабах, чтобы оправдать финансовый вклад и техническое переоборудование дата-центра для перехода от воздушного к жидкостному охлаждению. Если в дата-центре уже оборудована и работает система CRAC (computerroomairconditioning), то у компании нет мотивации что-то менять, потому что современные серверы работают отлично с воздушным охлаждением. Реальный толчок для перехода на погружное жидкостное охлаждение возникает, когда речь идет о будущих проектах – серверах высокой плотности и высокой производительности, которые трудно обеспечить полностью при помощи воздушного охлаждения. Погружное жидкостное охлаждение – это технология для ЦОДа, которая требует радикальных перемен. Сегодня масштабируемость ЦОДовоснована на вертикальных стойках, но с погружным жидкостным охлаждением стойки должны размещаться горизонтально в резервуарах. Кроме того, наличие жидкости добавляет суеты и «грязи» в работу с сервером, если возникает необходимость что-то поменять или добавить. Угроза утечек пока остается главным препятствием для широкого распространения технологии. Потенциальные проблемы с обслуживанием новой системы и утилизации жидкости. Даже тогда, когда жидкие ванны плотно закрыты, важно фильтровать или очищать жидкость, удаляя экологические и биологические загрязняющие примеси, которые препятствуют циркуляции и, возможно, даже создают опасность для здоровья персонала. Лучше всего использовать очищенные охлаждающие жидкости с невысокой степенью вязкости, но значительной тепловой инертностью, которые являются экологически чистыми и нетоксичными, например, минеральное масло. Однако четкие отраслевые стандарты для выбора жидкости, разработки, фильтрации и утилизации пока не существуют. Иммерсионные жидкостные системы охлаждения уже появились на рынке, но важно рассмотреть некоторые аспекты логистики и адаптации новой технологии. Системы погружного жидкостного охлаждения могут работать с существующими конструкциями и серверным оборудованием ЦОДов, так что можно включать эти технологии в планы поэтапного развития площадок. Например, если новый шкаф высокой плотности выходит за пределы отведенной зоны для установки, то погружная жидкостная система охлаждения будет разумным решением проблемы. Мне кажется, что эта технология особенно подходит для современных жестких условий эксплуатации и суперкомпьютерных приложений Тем не менее, в полной мере преимущество погружного жидкостного охлаждения реализуется только с серверами и стойками, которые вообще не могут использоваться вместе с воздушным охлаждением. По этой причине, многие предприятия откладывают установку погружных систем охлаждения до тех пор, пока не появятся дата-центры нового поколения, где будут установлены системы высокой плотности. Для модернизации или строительства погружной системы в любом ЦОДе необходимо произвести структурный анализ, чтобы убедиться, что нагрузка на пол выдержит дополнительный вес жидкости в дополнение к стойкам и ИТ-оборудованию. Установке также требуются насосы, чиллеры, фильтры, трубопроводы и датчики специально для охлаждающей системы для того чтобы жидкостное охлаждение полностью соответствовало правильным методикам проектирования ЦОДов. Поскольку технология погружения в жидкость используется только в горизонтальных стойках, это влияет на структуру оснащения дата-центра. Сегодняшние серверы используют вентиляторы, радиаторы и сложные воздуховоды для того, чтобы направить поток воздуха через процессоры и компоненты памяти. Хотя серверы полностью совместимы с жидкостным охлаждением, все элементы системы воздушного охлаждения должны быть удалены перед погружением сервера в охлаждающую жидкость. Твердотельные дисковые устройства могут быть погружены в жидкость, но такое действие изменит не в лучшую сторону работу обычных магнитных дисков. Для того чтобы устранить это затруднение, эти диски должны быть удалены их зоны погружения и перемещены на внешний (сухой) уровень подсистемы хранения или в сеть хранения данных (если только они специально не были тестированы и не определены как подходящие для непосредственного погружения в жидкость). Размещение оптического кабеля – еще одна проблема. Электрические кабели (такие, как категории 6A кабелей Ethernet) работают нормально при погружении, но наличие жидкости может изменить показатель преломления в оптическом интерфейсе (там, где совмещаются оптоволоконный кабель и порт). Это может снизить производительность сети - даже небольшое воздействие ухудшит магистральные соединения 10/40/100 GigE, высокопроизводительные соединения волоконно-оптических каналов или другие порты, где используется волоконный кабель. Используя жидкостную систему, нельзя забывать об угрозе протечек или загрязнения. Конечно, в дата-центрах используется нетоксичная и экологически чистая жидкость, но никто не хочет работать на предприятии, покрытом минеральным маслом. Плохая идея − вытащить сервер из контейнера, слить жидкость на пол и ковыряться в оборудовании, из которого летят градом капли. Работникам понадобится защитная одежда и специальные поддоны с поднятыми краями, чтобы сохранить оставшуюся жидкость. Также необходимо предусмотреть меры для очистки пролившейся жидкости. Системам жидкостного охлаждения требуются двойные резервуары, которые предохраняют от утечек, и средства мониторинга, чтобы вовремя обнаружить даже незначительное просачивание хладагента на объекте. Однако спрос на большие вычислительные мощности при более компактных системах хранения и обработки приведет к увеличению процессорных сокетов и памяти на высокопроизводительных серверах. Сверхнагруженные серверы и стойки станут слишком плотными, чтобы охлаждаться воздухом, поэтому «вендоры» начнут поставки систем иммерсионного жидкостного охлаждения, по меньшей мере, нескольких вариантов, и это откроет дорогу для широкого проникновения технологии в центры обработки данных. Прямые иммерсионные системы охлаждения доступны уже сейчас и могут быть интегрированы в существующие дата-центры с серверами, где установлено воздушное охлаждение. Но адаптация технологий идет крайне медленно, учитывая, какие крупные инвестиции сделаны в механические технологии охлаждения и постоянное повышение энергоэффективности современных систем. Аналитики не спешат комментировать сроки распространения инновации. Но потенциальные выгоды заманчивы. Согласно исследованиям, сделанным в середине 2014 года, в ближайшие 18 месяцев на рынке появится больше «вендоров» прямого жидкостного охлаждения. .
|