КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Уравнение бегущей волны. Фазовая скорость. Волновое уравнениеБегущими волнаминазываются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии.Этот вектор для упругих волн называется вектором Умова(по имени русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны. Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение x будет зависеть только от х и t, т. е. x=x(х, t). На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х=0, описываются функцией x(0, t)=Аcoswt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на т, так как для прохождения волной расстояния х требуется время t=x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид x(x,t)=Acosw(t-x/v), (154.1) откуда следует, что x(х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны.Если плоская волна распространяется в противоположном направле-
нии, то x(х, t)=A cosw(t+x/v). В общем случае уравнение плоской волны,распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид x(x,t)=Acos[w(t -х/v)+j0], (154.2) где А=const — амплитуда волны,w— циклическая частота волны,j0 — начальная фаза колебаний,определяемая в общем случае выбором начал отсчета х и t, [w(t-x/v)+j0]—фаза плоской волны. Для характеристики волн используется волновое число k=2p/l=2p/vT=w/v. (154.3) Учитывая (154.3), уравнению (154.2) можно придать вид x(x,t)=Acos(wt-kх+j0). (154.4) Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx. Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде x(x,t)=Aei(wt-kx+j0), где физический смысл имеет лишь действительная часть (см. § 140). Предположим, что при волновом процессе фаза постоянна, т. е. w(t-x/v)+j0=const. (154.5) Продифференцировав выражение (154.5) и сократив на w, получим dt-(1/v)dx=0, откуда dx/dt=v. (154.6) Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью. Повторяя ход рассуждений для плоской волны, можно доказать, что уравнение сферической волны— волны, волновые поверхности которой имеют вид концентрических сфер, записывается как x(r,t)=A0/rcos(wt-kr+j0), (154.7) где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/r. Уравнение (154.7) справедливо лишь для r, значительно превышающих размеры источника (тогда источник колебаний можно считать точечным). Из выражения (154.3) вытекает, что фазовая скорость v=w/k. (154.8) Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн,а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой. Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением— дифференциальным уравнением в частных производных где v — фазовая скорость, D=д2/дx2 +д2/дy2+д2/дz2— оператор Лапласа.Решением уравнения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид
|