Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.




Читайте также:
  1. I. Титрант метода
  2. IX. Продолжайте принимать решения
  3. Алгоритм составления системы уравнений Колмогорова
  4. Алгоритмы
  5. Алгоритмы вычисления функции шифрования f и ключей для DES.
  6. Алгоритмы спецназа
  7. Алгоритмы, программирование
  8. Анализ внешней среды и ее влияние на разработку управленческого решения. Свойства внешней среды.
  9. Аналитические решения заданного уравнения

Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.


Дата добавления: 2015-09-13; просмотров: 15; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты