КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Способ существенной выборки, использующий «вспомогательную плотность распределения».В качестве оценки интеграла принимают , где n – число испытаний; f(x) – плотность распределения «вспомогательной» случайной величины X, причём ; - возможные значения X, которые разыгрывают по формуле . Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку . Задача. Найти оценку интеграла . Решение. Так как , то в качестве плотности распределения «вспомогательной» случайной величины X примем функцию . Из условия найдём . Итак, . Запишем искомый интеграл так: . Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями): , где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение , или уравнение , где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X: . В таблице 2 приведены результаты 10 испытаний. Сложив числа последней строки таблицы 2, получим . Искомая оценка равна . Таблица 2.
|