КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Общая характеристика повреждающего действия ионизирующего излучения.Стр 1 из 5Следующая ⇒ Введение Вопрос о действии радиации на человека и окружающую среду приковывает к себе пристальное внимание общественности и вызывает много споров. Достоверная научная информация по данному вопросу часто не доходит до населения, которое по этой причине вынуждено пользоваться всевозможными слухами. Радиоактивность и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни. Но человечество, как и весь живой мир в целом, ранее не испытывало воздействия высоких доз ионизирующих излечений: в процессе эволюции не сформировались ни специфические органы восприятия данного вида воздействия, ни приспособительные защитные механизмы. За последние десятилетия человек создал сотни искусственных радионуклидов и научился использовать энергию атома в самых разных целях: для лечения и создания атомного оружия, для производства энергии и изготовления светящихся циферблатов часов. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Радиация действительно опасна. В больших дозах она вызывает серьезные поражения тканей, а в малых способна вызывать рак и индуцировать генетические дефекты, которые могут проявиться у детей, внуков или более отдаленных потомков человека, подвергшегося облучению. В связи с ухудшением экологической ситуации в мире и в нашей республике, принявшим глобальные размеры после аварии на Чернобыльской АЭС, изучение всех аспектов влияния ионизирующих излучений на организм человека приобретает особую актуальность. Данное пособие в краткой форме излагает общую характеристику ионизирующих излучений, рассматривает их действие на организм человека, описывает развитие острой лучевой болезни, особенности внутреннего облучения, перечисляет основные мероприятия по оказанию доврачебной помощи населению при угрозе поражения, приводит рекомендации по радиационной безопасности в условиях проживания на загрязненной территории. Общая характеристика повреждающего действия ионизирующего излучения. Ионизирующее излучение – это излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков (Закон РБ № 122-3 от 05.01.1998 «О радиационной безопасности населения»). Ионизирующее излучение получило свое название благодаря способности вызывать ионизацию атомов и молекул в облучаемом веществе. Как известно, атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, образующих электронную оболочку вокруг ядра. В целом атом электрически нейтрален, но, потеряв один или несколько электронов, он приобретает положительный заряд. Ядро состоит из положительно заряженных протонов и нейтральных нейтронов. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Ядра всех изотопов химических элементов образуют группу «нуклидов». Некоторые нуклиды стабильны, т. е. в отсутствие внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов не стабильны, они все время превращаются в другие нуклиды с высвобождением энергии, которая передается дальше в виде излучения. Можно сказать, что испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это a-излучение; испускание электрона – это b-излучение. Часто нестабильный нуклид оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию чистой энергии, называемой g-излучением. Как и в случае возникновения рентгеновских лучей (во многом подобных гамма-излучению), при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид – радионуклидом. Число распадов в секунду в радиоактивном источнике называется активностью. Единица измерения активности – беккерель (Бк,Bq): 1 Бк равен одному распаду в секунду. Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада. Уменьшение концентрации радионуклидов в организме в два раза называется периодом полувыведения. К примеру, на территории Республики Беларусь в результате аварии на ЧАЭС выпали следующие радионуклиды с периодами полураспада и полувыведения: углерод-14 – 5730 лет и 200 дней соответственно; цезий-137, 30 лет и 100 дней соответственно; стронций-90 – 29 и 20 лет соответственно; йод-131 – 8 и 138 дней соответственно. Безопасной для проживания и использования территория становится по истечении примерно 10 периодов полураспада. Проникающие в ткань организма a- и b- частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят (g-излучения и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям). За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно зараженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы. Этот процесс продолжается до тех пор, пока общий запас энергии частицы не становится настолько малым, что она утрачивает свою ионизирующую способность. И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционноспособные, как «свободные радикалы». В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки. Образуются несвойственные организму, а потому токсичные для него химические соединения. Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к заболеванию раку. Естественными источниками наружного облучения являются космическое облучение (300 мкЗв в год на уровне моря) и земная радиация (300–600 мкЗв в год); внутреннего облучения – радиоактивный газ радон. К искусственным источникам относятся: а) медицинское оборудование – 20% от естественного фона; б) ядерные взрывы – 0,8% от естественного фона; в) атомная энергетика (работа без аварий) – 0,04–0,05% от естественного фона; г) профессиональное облучение (работники атомной промышленности, медперсонал, шахтеры, экипажи самолетов); д) бытовые источники (телевизоры, компьютеры, светящиеся циферблаты часов); е) строительные материалы. Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма. a-излучение, которое представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие a-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. b-излучения обладают большей проникающей способностью: оно проходит ткани организма на глубину 1–2 см. Проникающая способность g-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.
|