Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Свойства эмпирических статистических совокупностей. Графическое изображение распределения




Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего объекты.

Если совокупность содержит большое число объектов, то в случайном порядке отбирают из всей совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборной называют совокупность случайно отобранных объектов. Совокупность объектов, из которых производится выборка, называется генеральной.

Совокупность случайных величин, обладающих качественной общностью, называется статистической совокупностью, а каждый член этой совокупности вариантой. Число вариант в совокупности представляет объём совокупности. Статистическая совокупность может состоять из непрерывно меняющихся или дискретных случайных величин.

Для того чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Иначе говоря, выборка должна быть репрезентативной (представительной).

К первой задаче статистической обработки относится группировка вариант в совокупности. Группировка является одним из важнейших положений статистической теории. Метод группировок определяется задачами исследования и является основой математической статистики.

Рассмотрим один из способов группировок, заключающийся в распределении числа случайных величин по значениям дискретной случайной величины или по интервалам непрерывной случайной величины.

Рассмотрим данный способ группировки на примере статистической совокупности, представляющей собой золотосодержащую пробу, в которую попало 100 золотых частичек разного диаметра. Диаметр частичек является непрерывной случайной величиной xi :

x1, x2, x3, ….. xi, x100

Совокупность вариант-диаметров записывается в виде 10 столбцов по 10 вариант в каждом в той последовательности, в какой значения диаметра были получены в результате эксперимента. Затем определяется размах изменения вариант совокупности

. (2-1.1)

Полученный размах (1) совокупности делится на определенное число интервалов К, которое определяется объемом совокупности N

. (2-1.2)

Ширина каждого интервала

. (2-1.3)

должна способствовать выявлению основных черт распределения случайных величин и сглаживанию случайных колебаний. Поэтому экспериментатор может отступать от указанного числа интервалов (2-1.2) и брать большее или меньшее число интервалов в зависимости от поставленных задач эксперимента и объема совокупности. При этом нужно помнить, что ширина интервала не должна быть меньше цены деления измерительного прибора. Если деление (2-1.3) не выполняется нацело, то результат округляют обычно в большую сторону, чтобы не потерять часть полученных результатов.

Для нахождения числа вариант в каждом интервале необходимо определить границы всех интервалов. За верхнюю границу первого интервала нужно взять xmax. Следующие границы всех интервалов распределяются таким образом:

При совпадении границ интервалов с вариантой последнюю вносят в интервал по совпадению с верхней границей интервала.

Число вариант, попавших в интервал, называется частотой ni ( ), а отношение частоты к объему совокупности – относительной частотой или частостью vi:

. (2-1.4)

Распределение частоты по значениям случайной дискретной величины или по интервалам непрерывной случайной величины называется законом распределения.


Поделиться:

Дата добавления: 2015-09-14; просмотров: 105; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты