КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Интерполяция В-сплайнами ⇐ ПредыдущаяСтр 6 из 6 Пусть отрезок [a, b] разбит на n одинаковых частей точками x0, x1,…xn. Примем ч0=аб чт=иб р= (и-ф) .тб чш= ф+шрю Сплайном называется непрерывная на [a, b] и имеющая непрерывные производные функция, на каждом из частичных участков представляющая собой алгебраический многочлен. Порядком сплайна называется старший порядок многочлена, а дефектом сплайна называется разность между порядком сплайна и старшей непрерывной производной. Например, линейная интерполяция - это сплайн первого порядка с дефектом 1. Наиболее широкое распространение на практике имеет кубический сплайн. Если сплайн используется для интерполяции некоторой функции и ее производных, т.е. в узлах интерполяции значение сплайна и ее производных некоторых порядков совпадают со значениями функции и ее производных соответствующих порядков, то такой сплайн называется интерполяционным. Если интерполяционный сплайн на заданном отрезке рассматривать как совокупность кубических сплайнов для каждой пары точек, такая интерполяция носит название локальной интерполяции. Этот сплайн не прерывен вместе с первой производной, но непрерывность второй производной не гарантируется, т.е. дефект сплайна равен 2. Если этот сплайн имеет непрерывную вторую производную на отрезке [a, b], т.е. имеет дефект 1, то такой сплайн носит название глобального. Для построения кубического сплайна используется формула: Для построения глобального сплайна, т.е. сплайна с дефектом 1 необходимо, начиная со 2-го узла, поставить условие непрерывности 2-й производной, т.е.2-я производная при подходе к точке 2 и дальше слева (x1-0) должна равняться второй производной при подходе справа (x1+0). Такие равенства можно составить для всех внутренних узлов x1 до xn-1. Затем используем условия на краях x0 и xn, получаем систему уравнений, которая и обеспечит дефект 1. Очевидно, что при наличии S3 на соответствующих участках, построение таких равенств не представляет особого труда. Приравнивая эти значения, для определения m получим СЛАУ.
В двух крайних точках: Если функция задана в виде таблиц, то для вычисления производных используеться результаты, получаемые при численном диференцировании, порядок точности которых не ниже 3-ей степени.
Заключение В ходе выполнения работы был проведен сравнительный анализ численных методов, таких как интерполяция. В результате мы приобрели навыки в применении различных численных методов на практике. А также были исследованы различные методы. Проведя исследование функции различными методами, мы получили примерно одинаковые результаты, так как при исследовании разными методами таблично заданная функция ведет себя по разному. Теперь перед нами стоит задача в применении приобретенных знаний в своей будущей профессиональной деятельности.
|