КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Изменения в опорно-двигательной и других системах организма при физической нагрузкеРегулярные физические нагрузки увеличивают прочность костной ткани, повышают эластичность мышечных сухожилий и связок, увеличивают выработку внутрисуставной (синовиальной) жидкости. Все это способствует возрастанию амплитуды движений (гибкости). Заметные изменения происходят и в скелетных мышцах. За счет увеличения количества и утолщения мышечных волокон происходит рост силовых показателей мышц. У спортсменов и у не занимающихся физическими упражнениями они существенно различаются (табл. 4.4). Подобные различия достигаются и за счет совершенствования нервно-координационного обеспечения работы мышц — способности к одновременному участию в отдельном движении максимального количества мышечных волокон и полному и одновременному их расслаблению. При регулярных физических нагрузках увеличивается способность организма откладывать в мышцах (и печени) запас углеводов в виде гликогена и тем самым улучшать так называемое тканевое дыхание мышц. Если в среднем величина этого запаса составляет у нетренированного человека 350 г, то у спортсмена она может достигать 500 г. Это повышает их потенциальные возможности к проявлению не только физической, но и умственной работоспособности.
4.2. Обмен веществ и энергии в покое и при различных нагрузках
Единство организма человека с внешней средой, нормальное осуществление организмом своих жизненных функций проявляется прежде всего в непрекращающемся обмене веществ и энергии. Соотношение процессов ассимиляции и диссимиляции, накопления и расхода энергии различно при покое, умственном труде и при физических нагрузках разного объема и интенсивности.
4.2.1. Обмен веществ
Всякая деятельность человека связана с расходом энергии, а следовательно, с необходимым обменом веществ. Обменные процессы протекают очень интенсивно. Почти половина тканей тела обновляется или заменяется полностью в течение трех месяцев (за 5 лет учебы роговица глаза у студентов сменяется 350 раз, а ткани желудка обновляются около 500 раз). Для нормального протекания этих процессов требуется расщепление сложных органических веществ, поступающих в организм человека. Такими веществами, имеющими наибольшее значение, являются белки, углеводы, жиры (при участии воды, минеральных солей, витаминов). Не все они в одинаковой степени участвуют в энергетическом обеспечении различных видов жизнедеятельности человека, различных проявлений его двигательной активности. Белки являются основным строительным материалом, из которого построены клетки всех тканей организма. Белки состоят из разнообразных белковых элементов — аминокислот. В состав клеток живого организма входит более 20 типов аминокислот. Они делятся на незаменимые, получаемые только с пищей, и заменимые, которые могут быть синтезированы в организме из других аминокислот. Белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые кислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Все это следует знать при подборе белковых продуктов питания. Основным источником полноценных белков служат животные белки. Растительные белки, за редким исключением, неполноценные. Недостаток белков в пище невосполним. Внутренних резервов для их замены в организме нет. В то же время при длительном голодании организма, когда истощаются запасы углеводов и жиров, белки могут использоваться как источник энергии. При окислении 1 г белка выделяется 4,1 ккал. В виде запасов белки в организме не откладываются. Потребность в белковой пище особенно велика у молодого растущего организма, у занимающихся физическими упражнениями, что связано с необходимостью роста мышечной массы. Углеводы, к которым относятся глюкоза, животный крахмал — гликоген, используются организмом преимущественно как основной источник энергии (1 г углеводов дает 4,1 ккал). Особенно интенсивно углеводы используются мышцами и клетками головного мозга. Если с пищей поступает недостаточное количество углеводов, то они синтезируются из жиров и белков. Излишки превращаются в печени и мышцах в гликоген и там откладываются (депонируются). Углеводы в виде глюкозы постоянно содержатся в крови в количестве (в норме) от 0,08% до 0,12%. А перед интенсивной физической или умственной работой рефлекторно повышается количество глюкозы в крови. Исследования показали, что особенно много углеводов потребляется мышцами при физической работе. В то же время интересно отметить, что содержание глюкозы в крови у студентов перед экзаменом такое же, как у боксера перед боем. При длительной интенсивной физической работе, равно как и при умственной, количество углеводов в крови, печени и мышцах истощается. Уменьшение концентрации глюкозы в крови до 0,07% (гипогликемия) снижает мышечную и умственную работоспособность. Снижение концентрации до 0,06% приводит в большинстве случаев к невозможности продолжения физической и умственной деятельности. Однако у тренированных спортсменов наблюдается способность продолжать физическую работу при снижении концентрации глюкозы в крови даже до 0,04%, что указывает на высокие резервные возможности организма тренированного человека. Источниками углеводов являются почти исключительно растительные продукты (в картофеле содержится 18% углеводов, в изюме — до 65%, в меде — 76%). Жиры обладают высокой энергетической ценностью — 1 г жиров при расщеплении выделяет 9,3 ккал. Однако жиры как энергетический материал в обычных условиях используются только сердечной мышцей: 67% потребляемого сердцем кислорода расходуется на окисление жирных кислот. Скелетные мышцы начинают использовать жиры в качестве источника энергии только после длительной, интенсивной работы, когда запасы углеводов истощаются и организму грозит «энергетический кризис». При голодании жировые запасы также служат источником углеводов. Регулярные активные занятия спортом, особенно циклическими видами упражнений (ходьба и бег, ходьба и бег на лыжах, на коньках, плавание и др.), активизируют в организме обмен жиров, препятствуют накоплению излишнего количества жировой ткани, которое вредно отражается на состоянии здоровья и работоспособности. В большом количестве жиры содержатся в молочных и некоторых растительных продуктах: в 100 г топленого и растительного масла — 95 г жира; сметаны — 24 г, свинины жирной — 37 г, баранины — 29 г. Обмен воды и минеральных веществ. Человеческий организм на 60— 65% состоит из воды. Многочисленные химические превращения веществ в клетках происходят только в водных растворах. Организм постоянно теряет воду, которая должна пополняться в среднем на 1,5—2,5 л в сутки в зависимости от роста, веса, внешней температуры и других факторов. Сознательные нарушения водного баланса (при сгонке веса некоторыми спортсменами и по другим причинам) чреваты серьезными нарушениями внутренних механизмов обмена веществ и нежелательны для нормальной жизнедеятельности организма. Минеральные соли способствуют поддержанию осмотического давления в клетках и биологических жидкостях, участвуют в обеспечении постоянства внутренней среды организма, в протекании химических процессов обмена веществ и энергии. Почти все необходимые соли поступают в достаточном количестве при правильном сбалансированном питании. Не хватает только хлорида натрия — поваренной соли, которая обычно в небольших количествах добавляется в пищу. Витамины и их роль в обмене веществ. Значение витаминов состоит в том, что, присутствуя в организме в ничтожных количествах, они регулируют реакции обмена веществ, свертываемость крови, рост и развитие организма, сопротивляемость инфекционным заболеваниям. Особенно важна витаминизация в питании молодого организма и тех взрослых, чья деятельность связана с большими физическими нагрузками, в том числе и при занятиях спортом. Как правило, им приходится обращать особое внимание на наличие в питании витаминов. Витаминная недостаточность, как правило, сказывается в ранний весенний период. Однако при ее восполнении, при дополнительной витаминизации, не следует злоупотреблять синтетическими препаратами.
4.2.2. Обмен энергии. Энергозатраты Обмен веществ между организмом и внешней средой сопровождается обменом энергии. Важнейшей физиологической константой организма человека является то минимальное количество энергии, которое человек расходует в состоянии полного покоя. Эта константа называется основным обменом. Величина его зависит от массы тела: чем она больше, тем больше обмен, но эта зависимость не прямолинейна. Потребность организма в энергии оценивается в килокалориях. Естественно, эта потребность зависит от целого ряда факторов: уровня основного обмена, интенсивности выполняемой работы и др. Соотношение количества энергии, поступившей в организм с пищей и израсходованной, называется энергетическим балансом, и находится он в тесной зависимости от характера жизнедеятельности. Энергетический баланс в жизни современного человека очень часто существенно нарушается. В экономически развитых странах за последние 100— 150 лет удельный вес мышечной работы как генератора энергии, используемой человеком, сократился почти в 200 раз, что привело к снижению энергозатрат на мышечную деятельность. Дефицит энергозатрат, необходимых для нормальной жизнедеятельности организма у городского населения, составляет около 500—750 ккал в сутки. Так, если минимальная величина суточных энергозатрат в норме составляет 2950—3850 ккал (конечно, в зависимости от возраста, пола и массы тела), то из них на мышечную деятельность должно расходоваться не менее 1200—1900 ккал. Остальные энергозатраты обеспечивают поддержание жизнедеятельности организма в состоянии покоя, нормальную деятельность систем дыхания и кровообращения, обменные процессы и т.д. (энергия основного обмена). Расход энергии тесно связан с особенностями различных физических упражнений. Как известно, значительная группа разнообразных спортивных дисциплин носит циклический характер, т.е. с повторяющейся биомеханической последовательностью выполнения (бег, плавание и т.п.). В то же время существует большая группа видов спорта и отдельных упражнений, особенностью которых является нестандартность исполнения — ациклические упражнения. Это различные единоборства, спортивные игры, гимнастика и т.д. Подобное многообразие характера движений не всегда позволяет точно определить их мощность (в кг/м) и соответственно расход энергии. Это легче выявить в циклических видах и сложнее в ациклических упражнениях (хотя и возможно в лабораторных условиях). При физических нагрузках циклического характера для определения особенностей расхода энергии спортивные физиологи ориентируются на зоны относительной мощности выполнения отдельных упражнений, приведенные в табл. 4.5. Физиологические особенности выработки и расхода энергии организмом связаны с биохимическими процессами на уровне клетки. От этих процессов зависит методика подбора и применения отдельных тренировочных упражнений, характер их выполнения на учебно-тренировочных занятиях, содержание разминки на соревнованиях и т.д. В контексте этих процессов становятся понятными многие закономерности (и неизбежность, даже необходимость!) появления некоторых неприятных ощущений на дистанциях и особенно на их финишных отрезках. Итак, мы подошли к ключевым понятиям и явлениям: анаэробного (бескислородного) и аэробного (кислородного) процессов выработки энергии в клетках нашего организма и расхода этой энергии в отдельных физических упражнениях. Анаэробный процесс. Непосредственным источником энергии в клетках при мышечном сокращении служит аденозинтрифосфорная кислота (АТФ). В результате биохимических превращений трех типов — фосфогенного, лактатного и окислительного высвобождается энергия, необходимая для сокращения мышц. Фосфогенный (без участия кислорода) включается первым и разряжается очень быстро — за 5—10 с на 90—95%. Лактацидный источник энергии включается за фосфогенным и примерно втрое слабее его. Зато емкость этого источника бескислородного обмена в организме вдвое больше, и запас его исчерпывается только к концу 2-й минуты непрерывной работы. По мере расходования лактацидного источника в мышцах и крови накапливаются продукты распада — молочная кислота (лактат). Для ее ликвидации и восстановления АТФ требуется кислород, но его практически нет, и образуется кислородный долг. Величина максимально возможного кислородного долга характеризует анаэробную производительность организма. У не занимающихся спортом она колеблется от 4 до 10 л, а у спортсменов — от 15 до 22 л. Чем выше концентрация лактата, тем сильнее ощущается утомление, преодоление которого требует волевого усилия. Физически тренированные люди могут проявлять это усилие в большем диапазоне, так как они выработали на тренировках большую способность к перенесению высокой концентрации лактата и преодолению связанных с нею сдвигов в кислотно-щелочном равновесии в организме. Аэробный (окислительный) процесс происходит параллельно. Но в связи с тем, что на первых двух минутах напряженной физической работы усиление дыхательной, сердечной деятельности и общего кровотока осуществляется с некоторым запозданием, этот процесс проявляется незначительно. Только к концу 3-й минуты он приближается к максимальному уровню потребления кислорода (МПК) данного человека. Все эти процессы анаэробного и аэробного обмена имеют свое яркое проявление при характеристике упражнений, относящихся к различным относительным зонам мощности: максимальной, субмаксимальной, большой и умеренной (табл. 4.5). Эти четыре зоны относительной мощности предполагают деление множества различных дистанций на четыре группы: короткие, средние, длинные и сверхдлинные. В чем же суть разделения физических упражнений по зонам относительной мощности и как это группирование дистанций связано с энергозатратами при физических нагрузках разной интенсивности?
Во-первых, мощность работы прямо зависит от ее интенсивности. Во-вторых, высвобождение и расход энергии при преодолении дистанций, входящих в различные зоны мощности, имеют существенно отличающиеся физиологические характеристики (табл. 4.6.). Зона максимальной мощности. В ее пределах выполняется работа, требующая предельно быстрых движений. Ни при какой другой работе не освобождается столько энергии в единицу времени, сколько при работе с максимальной мощностью. Работа мышц совершается почти полностью за счет бескислородного (анаэробного) распада веществ. Практически весь кислородный запрос (долг) организма удовлетворяется уже после работы. Дыхание ограничено — спортсмен либо не дышит, либо делает несколько коротких вдохов. Из-за кратковременности работы кровообращение не успевает усилиться, частота же сердечных сокращений значительно возрастает к концу работы. Однако минутный объем крови увеличивается ненамного, потому что не успевает вырасти систолический объем крови в сердце. Зона субмаксимальной мощности. В мышцах протекают не только анаэробные процессы, но и процессы аэробного окисления, доля которого увеличивается к концу работы из-за постепенного усиления кровообращения. Интенсивность дыхания также возрастает до самого конца работы. Все время прогрессирует кислородная задолженность. Кислородный долг к концу работы становится даже больше, чем при максимальной мощности. В крови происходят большие химические сдвиги. Зона большой мощности. Возможности аэробного окисления более высоки, однако они все же несколько отстают от анаэробных процессов, поэтому накопление кислородного долга все же происходит. К концу работы он бывает значителен. Большие сдвиги наблюдаются в химическом составе крови и мочи. Зона умеренной мощности. Это уже сверхдлинные дистанции. Работа умеренной мощности характеризуется устойчивым состоянием, с чем связано усиление дыхания и кровообращения пропорционально интенсивности работы и отсутствие накопления продуктов анаэробного распада. При многочасовой работе наблюдается значительный общий расход энергии, что уменьшает углеводные ресурсы организма. Таким образом, при тренировке на коротких, средних, длинных и сверхдлинных дистанциях и подобных упражнениях должны подбираться такие отрезки (упражнения) и такая интенсивность их преодоления, которые тренировали бы соответствующие этим дистанциям физиологические механизмы энергетического обмена, физиологически и психологически готовили бы тренирующегося к преодолению тех трудностей и неприятных ощущений, с которыми связано возможно более быстрое (качественное) выполнение конкретных упражнений. Общее представление о расходе энергии при различных видах физических упражнений показано в табл. 4.7. В заключение необходимо отметить, что не вся энергия, расходуемая человеком при совершении механической работы, используется непосредственно на эту работу, ибо большая часть энергии теряется в виде тепла. Известно, что отношение энергии, полезно затраченной на работу, ко всей израсходованной энергии называется коэффициентом полезного действия (КПД). Считается, что наибольший КПД человека при привычной для него работе не превышает 0,30—0,35. Следовательно, общие энергетические затраты организма минимум в 3 раза превышают затраты на совершение работы. Чаще же КПД равен 0,20—0,25, так как нетренированный человек тратит на одну и ту же работу больше энергии, чем тренированный. Так, экспериментально установлено, что при одной и той же скорости передвижения разница в расходе энергии между тренированным спортсменом и новичком может достигать 25—30%. Это подчеркивает экономизацию двигательной деятельности у тренированного человека.
|