КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Перевод количества информации между различными единицами измерения1 бит – минимальная неделимая единица информации. Пример 1. Перевести 376832 бит в Кбайт. С дополнительным теоретическим материалом можно ознакомиться в литературе [2, 7]. Варианты задания Содержание отчета
Технология выполнения работы В данной работе необходимо перевести в нужную по заданию систему счисления числа, записать ход рассуждений и полученные результаты. Произвести обратный перевод для проверки правильности. Далее необходимо вычислить количество информации, занимаемое вашими данными по формуле Р. Хартли. Затем перевести данные из Кбайт в бит и из бит в Кбайт. Вопросы для защиты работы 1. Во сколько раз увеличится число 10,12 при переносе запятой на один знак вправо? 2. Какое минимальное основание может иметь система счисления, если в ней записано число 23? 3. Перевести числа из десятичной системы в требуемую:
4. Сравните числа: 111012 и 1D16. 5. Переведите в нужную систему счисления:
6. Как перевести в биты значение, заданное в байтах и Кбайтах?
Лабораторная работа № 2. Время выполнения 2 часа Цель работы Изучить основы алгебры логики. Задачи лабораторной работы В результате прохождения занятия студент должен: 1. знать:
2. уметь:
Общие теоретические сведения Основные понятия алгебры логики Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями. Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно. Пример. «3 – простое число» является высказыванием, поскольку оно истинно. Не всякое предложение является логическим высказыванием. Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются. Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями. Пример. «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной. Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками. Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми). Пример. высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и». Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят. Чтобы обращаться к логическим высказываниям, им назначают имена. Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0». Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1). Таблица 1. Основные логические операции
Пример. Пусть А=«Сегодня пасмурно», тогда А=«Сегодня не пасмурно». И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками или &). Высказывание А • В истинно тогда и только тогда, когда оба высказывания А и В истинны. Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно. ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком (или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны. Пример: Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно. ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией (лат. implico – тесно связаны) и обозначается знаком → . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно. Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.
РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают. Пример: Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно. ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание А В истинно тогда и только тогда, когда значения А и В не совпадают. Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него. Замечание. Импликацию можно выразить через дизъюнкцию и отрицание: . Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию: . Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию: . Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания. Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция. С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением). Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками). Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1. Пример. – логическая функция двух переменных A и B. Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных – обычно задаются специальной таблицей. Такая таблица называется таблицей истинности. Приведем таблицу истинности основных логических операций (табл. 2) Таблица 2
Алгоритм построения таблиц истинности для сложных выражений:
2. Определить количество столбцов:
Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так: .
На входе два простых высказывания: А и В, поэтому n=2 и количество строк =22+1=5.
Выражение состоит из двух простых выражений (A и B) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.
Таблица 3. Таблица истинности для логической операции
. Таблица 4. Таблица истинности для логической операции
На входе два простых высказывания: А и В, поэтому n=2 и количество строк=22+1= 5.
Выражение состоит из двух простых выражений (A и B) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7. Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.
Таблица 5. Таблица истинности для логической операции
Существует три базовых логических элемента, которые реализуют три основные логические операции:
Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции. Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.
|