КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Пробой транзистораПробой биполярного транзистора, если не учитывать резко встречающийся пробой эмиттерного р-n перехода, можно охарактеризовать тремя физическими механизмами: - смыкание коллекторного и эмиттерного р-n переходов; - лавинный пробой коллекторного р-n перехода, - вторичный пробой. Первый вид пробоя – смыкание коллекторного и эмиттерного р-n переходов обусловлен эффектом Эрли (см.3.5.2), то есть расширением ОПЗ коллекторного р-n перехода при увеличении коллекторного напряжения. Если база высокоомна, то ОПЗ коллектора расширяется в основном в сторону базы и если база очень тонкая (десятые доли микрона, что характерно для СВЧ транзисторов при определенном напряжении на коллекторе может наступить момент когда ОПЗ коллекторного перехода сомкнется с ОПЗ эмиттерного перехода (рис.3.26). В схеме ОБ, так как, , а ток базы и то . Таким образом, в схеме ОБ при напряжении на коллекторе равном напряжению смыкания коэффициент передачи постоянного эмиттерного тока равен единице. В схеме ОЭ . Следовательно, в схеме ОЭ в этом случае коэффициент передачи тока базы стремится к бесконечности. Рисунок 3.26– Рисунок, поясняющий механизм смыкания эмитерного и коллекторного переходов В предположении резкого коллекторного р-n перехода ширина ОПЗ определяется как При , , следовательнодля n+p+ транзистора.
, Величины напряжений лавинного пробоя транзисторов, построенных по схемам ОБ и ОЭ, отличаются во много раз, что определяется механизмом стока дырок (случай n-р-n-транзистора), попадающих в область базы при лавинном умножении носителей в коллекторном р-n-переходе. Рассмотрим два крайних случая подключения электродов БТ для величин пробивных напряжений. Если база заземлена, а эмиттер отключен, то лавинный процесс в коллекторном переходе полностью определяется процессами, происходящими в отдельном р-n-переходе, а величина напряжения определяется как напряжение лавинного пробоя отдельно взятого р-n-перехода (см.1.11.1). Если эмиттер заземлен, а база отключена, то дырки, попадающие в область базы из коллекторного р-n-перехода при лавинном умножении, не могут выйти в общий вывод и накапливаются в базе. Это приводит к понижению высоты потенциального барьера эмиттерного перехода и дополнительной инжекции электронов в базу. Дополнительный поток электронов в коллекторном переходе вызывает дополнительные акты ударной ионизации, то есть вызывают дополнительное количество дырок, которые втягиваются в базу, и т.д. В качестве электрического параметра режима пробоя БТ в схеме ОЭ в отечественной литературе введено граничное напряжение (в иностранной литературе ) – это напряжение между коллектором и эмиттером при протекании через транзистор заданного тока коллектора и при токе базы, равном нулю. Исходя из определения, величину можно выразить через . Известно, что коэффициент передачи тока эмиттера . Считая, что в активном режиме работы БТ , имеем . В режиме пробоя , и при каком-то значении величина может быть равна 1. Следовательно, при этом значении величины коллекторного напряжения ток базы равен нулю. Известно, что При , следовательно или
Обычно для n-n-p-n транзисторов n берут равным 4. Чаще для определения величины используют эмпирическое выражение
где . Если после развития лавинного пробоя в коллекторном переходе не ограничивать ток пробоя, то это приведет к тепловой нестабильности, которая известна как вторичный пробой. ВАХ вторичного пробоя, как и любого теплового пробоя, имеет участок отрицательного дифференциального сопротивления [9]. При прямосмещенном эмиттере n-р-n-транзистора управляющий ток в базе протекает под эмиттером по направлению к базовому контакту, приводя к эффекту оттеснения тока эмиттера на край эмиттера. Ток может оказаться сконцентрированным на сравнительно малой площади с плотностью, достаточно высокой для того, чтобы инициировать тепловую нестабильность и вторичный пробой. Такая ситуация может иметь место из-за существования неоднородностей в области р-n-перехода эмиттер-база. Шнурование тока может иметь место при соответствующих условиях даже в совершенном материале; оно возникает при более низких плотностях тока при наличии в кристалле точечных дефектов.
|