![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теоретическое введение. Исходя из представлений о колебательном характере всех процессов в живых системах, предполагается, что живой организм есть сложно организованная системаИсходя из представлений о колебательном характере всех процессов в живых системах, предполагается, что живой организм есть сложно организованная система колебательных структур (осцилляторов) различной природы. Таким образом, биологический объект представляет собой совокупность колебательных цепей. Различные по природе колебательные процессы имеют одинаковые характеристики и описываются одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. В замкнутой электрической цепи, содержащей катушку индуктивности L и конденсатор С, могут возникнуть электромагнитные колебания. Поэтому такую цепь называют колебательным контуром. Если к электрическому контуру не подключены внешние источники переменной ЭДС, то колебания называются собственными. Иначе говоря, свободными (собственными) колебаниями называют такие колебания, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.
Возрастание тока ведет к возрастанию индукции магнитного поля катушки и, следовательно, к увеличению магнитного потока, пронизывающего катушку (соленоид). При всяком изменении магнитного потока, пронизывающего замкнутый контур, в этом контуре возникает ЭДС индукции Эта частота называется собственной частотой колебательного контура. В начальный момент, когда конденсатор полностью заряжен, в нем накоплена электрическая энергия
Проводники контура всегда обладают электрическим сопротивлением, поэтому часть энергии в процессе колебания расходуется на нагрев проводников, т.е. переходит в тепловую. Вследствие этого амплитуда электромагнитных колебаний в контуре постепенно уменьшается, и в нем происходят затухающие колебания (рис. 3). При достаточно большом сопротивлении контура или малой индуктивности колебания в нем вообще не возникают, а происходит так называемый апериодический разряд конденсатора (рис. 4).
Заряд на конденсаторе
тогда из (2) и (3) следует:
Подставив последние выражения в (1), получаем уравнение электрических колебаний в контуре (колебания напряжения на конденсаторе):
Как известно, полученное дифференциальное уравнение описывает затухающие колебания. Его решение имеет вид:
где
при этом
Из формул (7) следует, что в контуре возможны затухающие колебания лишь в том случае, если Сопротивление, определенное из этого условия называется критическим. Если сопротивление в контуре больше критического, то частота и период – мнимые величины. Колебания в таком контуре не возникают, а происходит апериодический разряд конденсатора (рис. 4). Для характеристики степени затухания колебаний, кроме коэффициента затухания Логарифмическим декрементом затухания колебаний
где Подставив в (9) значения
|