КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Определение понятий. Определение (дефиниция) (от латОпределение (дефиниция) (от лат. definitio- определение) понятия - логическая операция раскрытия содержания понятия или значения термина. С помощью определения понятий мы в явной форме раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов. Примеры: “Информатика - наука, предметом которой являются процессы и системы получения, хранения, передачи, распространения, использования и преобразования информации” (1); “Правильной дробью называется простая дробь, числитель которой меньше знаменателя” (2). Давая такие определения, мы отличаем науку информатику от других наук, а правильные дроби от всех других дробей, например, неправильных или десятичных. Приведем еще несколько определений понятий, взятых из школьных учебников, которые принадлежат к двум различным видам определений (реальным и номинальным). “Зоология - это наука о животных, об их разнообразии, строении, поведении, размножении, развитии, происхождении, а также о значении в природе и жизни человека” (3); “Слово зоология происходит от двух греческих слов: зоон - животное и логос - слово, учение, наука” (4) (Зоология. Учебник для 6-7 классов средней школы. М., 1979. С. 5). “Число, которое показывает, во сколько раз уменьшены (увеличены) настоящие расстояния на чертеже, называется масштабом” (5) (Учебник по природоведению для 2 класса. М., 1977.С. 121). Понятие, содержание которого надо раскрыть, называется определяемым понятием (definiendит, сокращенно Dfd), а то понятие, посредством которого оно определяется, называется определяющим понятием (definiепсе, сокращенно Dfп), Правильное определение устанавливает между ними отношение равенства (эквивалентности). Определения делятся на явные и неявные. В явных определениях даны определяемое понятие и определяющее, объемы которых равны, т. е. Dfd = Dfп. К их числу относится самый распространенный способ определения через ближайший род и видовое отличие, где формулируются существенные признаки определяемого понятия. Например: “Барометр - прибор для измерения атмосферного давления”; “Треугольник - многоугольник с тремя сторонами”; “Гротеск - способ сатирического изображения жизни, отличающийся резким преувеличением, сочетанием реального и фантастического”. Признак, указывающий на тот круг предметов, из числа которых нужно выделить определяемое множество предметов, называется родовым признаком, или родом. В приведенных выше примерах это “прибор”, “многоугольник”, “способ сатирического изображения жизни”. Признаки, при помощи которых выделяется определяемое множество предметов из числа предметов, соответствующих родовому понятию, называется видовым отличием (их может быть один или несколько). Разновидностью определения через род и видовое отличие является генетическое определение, в котором указывается способ образования только данного предмета. Например: “Кислотами называются сложные вещества, образующиеся из кислотных остатков и атомов водорода, способных замещаться атомами металлов или обмениваться на них”; “Коррозия металлов - это окислительно-восстановительный процесс, образующийся в результате окисления атомов металла”. Много генетических определений в математике, к их числу относятся такие, как “цилиндр вращения”, “конус вращения”. Определения через ближайший род и видовое отличие и генетические определения входят в класс реальных определений, ибо они определяют само понятие, например, “информатика”, “треугольник”, “кислота” и др. К явным относятся и номинальные определения. Последние дают определение термина, который обозначает понятие, или вводят знаки, заменяющие понятие (обычно в свой состав они включают слово “называется”. Они часто встречаются в математике. Например: “Конус называется круговым, если основание его - круг”; “Прямая, соединяющая вершину конуса и центр основания, называется осью конуса”. Номинальными определениями, вводящими знаки, являются следующие: “g-ускорение свободно падающего тела”, “т - масса тела”, “знак u обозначает строгую дизъюнкцию” и т. п. В приведенных выше примерах определения (1), (3) - реальные, а определения (2), (4) и (5) - номинальные. Чтобы определение было правильным, надо соблюдать следующие правила.
|