КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ОБРАБОТКА РЕЗУЛЬТАТОВ НЕСКОЛЬКИХ СЕРИЙ ИЗМЕРЕНИЙ⇐ ПредыдущаяСтр 12 из 12 Иногда многократное измерение одной и той же величины постоянного размера производится в несколько этапов, разными людьми, в различных условиях, в разных местах и в разное время. Результат такого измерения определяется несколькими сериями полученных значений, которые в силу различных обстоятельств могут отличаться по своим статистическим характеристикам. Серии называются однородными, если состоят из значений, подчиняющихся одному и тому же закону распределения вероятности. В противном случае серии считаются неоднородными. Проверка однородности является обязательной при выборе способа совместной обработки результатов нескольких серий измерений. Организуется она, обычно, на уровне эмпирических моментов: сравниваются между собой средние арифметические и оценки дисперсий в каждой серии. Различие между средними арифметическими и в двух разных сериях может быть случайным со средним значением, равным нулю, и дисперсией Если экспериментальные данные в каждой серии подчиняются нормальному закону распределения вероятности, то при большом их числе (пI,II > 40 . . . 50) нормальному закону подчиняются и средние арифметические и и разность G = - При небольшом количестве экспериментальных данных в каждой серии средние арифметические и подчиняются закону распределения вероятности Стьюдента, но их разность при пI + пII > 40 . . . 50 можно считать, что уже подчиняется нормальному закону. Поэтому, задавшись доверительной вероятностью Р и определив по верхней кривой на рис. 22 соответствующее ей значение t, находят доверительные границы G ± t SG , за пределами которых не может оказаться разность - , если она случайная и подчиняется нормальному закону распределения вероятности (см. рис. 41). При несоблюдении этого условия нужно искать причину расхождения между и , и в экспериментальные данные соответствующей серии вносить дополнительную поправку. Иногда большой массив экспериментальных данных (см. рис. 42) искусственно разбивают на две или большее количество серий для обнаружения посредством такой проверки прогрессирующего влияния какого-нибудь фактора.
Помимо выяснения значимости расхождения между средними арифметическими, проверка однородности серий включает сравнение оценок их дисперсий. Серии с незначимым различием оценок дисперсий называются равно-рассеянными, с существенным различием — неравнорассеянными. Значимость различия оценок дисперсий в двух сериях, результаты измерения в которых подчиняются нормальному закону распределения вероятности, проверяется в порядке, приведенном на рис. 43, где первоначальные операции совпадают с показанными на рис. 41 и поэтому при проверке однородности серий выполняются один раз. В процессе вычислений образуется отношениеy, вероятность значений которого, больших единицы, если это число случайное, подчиняется распределению Р.А. Фишера. Поэтому, выбрав значение интегральной функции распределения вероятности Р.А. Фишера равным вероятности Р, с которой принимается решение, можно проверить, больше или меньше ее аргумента yo вычисленное значение y. Если y £ yo, то различие оценок дисперсий в сериях можно признать случайным и с выбранной вероятностью Р считать, что гипотеза о равнорассеянности серий не противоречит результатам ее проверки по критерию Р.А. Фишера. В противном случае эта гипотеза должна быть отвергнута. Значения аргумента интегральной функции распределения вероятности Р.А. Фишера приведены в табл. 15.
Равнорассеянные серии с незначимым различием между средними арифметическими считаются однородными. Если входящие в них экспериментальные данные получены в одних и тех же условиях, это говорит о сходимости измерений, если в разных — о воспроизводимости. Под сходимостью понимается качество измерений, отражающее близость друг к другу результатов измерений, выполненных в одинаковых условиях, под воспроизводимостью — в разных Таблица 15
Продолжение
(в различных местах, в разное время, различными методами и средствами). Если серии неоднородны (неравнорассеянные, или различие между средними арифметическими не может быть признано незначимым), об измерениях говорят, что они не сходятся (или не воспроизводятся). Ценность измерительной информации вызывает стремление использовать экспериментальный материал, содержащийся во всех сериях изменений.Экспериментальные данные, входящие в однородные серии, можно рассматривать и обрабатывать как единый массив. Для сокращения вычислений при этом целесообразно использовать полученные ранее результаты: где N = nI +nII При обработке неравнорассеянных серий с незначимо различающимися средними арифметическими учитывается особая ценность измерений, выполненных с большей точностью. Дисперсия (рассеяние) в таких сериях меньше. Для учета этого в оценку среднего значения всего массива экспериментальных данных включают средние арифметические серий с "весами", обратно пропорциональными оценкам их дисперсий:
Это уже знакомое по предыдущему разделу среднее взвешенное. Стандартное отклонение среднего взвешенного Порядок обработки экспериментальных данных QIÎ {1, . . . ,mj} , входящих в jn {1, . . . ,j}неравнорассеянных серий с незначимым различием средних арифметических, показан на рис. 44.
* Влияние неслучайных факторов принято сводить к систематической составляющей погрешности измерения. В 1981г. Международный комитет мер и весов рекомендовал отказаться от такого подхода и не использовать термин «систематическая составляющая погрешности».
|