КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Портфель з багатьох акцій.Перейдемо тепер до загального випадку, коли до складу портфеля залучено багато різних акцій. Введемо такі позначення: n – кількість різних акцій, які входять до портфелю, що пронумеровані від 1 до n; mi – сподівана норма прибутку i-й акції , σi – ризик (розраховується як середньозважене відхилення) i-й акції , рij – коефіцієнт кореляції i-й и j-й акцій , (i ≠ j), хi - часка i-й акції, що включається до портфелю .
Очевидно, що Аналогічно, як і у випадку двох різних акцій, так і в загальному випадку, потрібно вміти обчислювати сподівану норму прибутку i ризик портфеля. Це здійснюють за допомогою таких формул: ; σр = (Vр)0,5,
де тр— сподівана норма прибутку портфеля акцій, Vр — варіація (дисперсія) портфеля акцій, σр - середньоквадратичне відхилення (ризик) портфеля акцій.
Варіацію, тобто ризик портфеля, можна трактувати як суму двох складових. Перша складова віддзеркалює індивідуальний ризик кожної з акцій. Оскільки це середньозважена варіацій окремих акцій (ваговими коефіцієнтами виступають квадрати часток акцій в портфелі); друга складова характеризується взаємозв'язками між парами акцій Тобто показує вплив коефіцієнтів кореляції пар акцій на ризик портфеля: від'ємні величини коефіцієнтів кореляції призводять до зменшення варіації портфеля. Приклад. Три акції А, В, С, пронумеровані 1, 2, 3, мають норми прибутку відповідно m1 = 5%, m2 = 10%, m3 = 15% середньоквадратичні відхилення і коефіцієнти кореляції приймемо вiдповiдно σ1 = 3%, σ2 = 7 %, σ3 = 10%, р12 = 0,6, р13 = - 0,2, р23 = -0,4. Визначити допустиму множину портфелів. Позначені літерами А, В, С вершини відповідають портфелям, що сформовані лише з однієї акції А, В, С відповідно. Частка інших двох акцій дорівнює нулеві. Необхідно зазначити, що кожен розсудливий інвестор обере будь-який з портфелів, що відповідає множині точок, котрі лежать на відрізку МС, зображеної на рис. 4.5 фігури. Дійсно, для будь-якоїіншої точки, що міститься в межах даної фігури (таких, що не лежать на кривій МС)знайдеться відповідна точка на кривій МС, для якої при тому ж значенні величини ризику, норма прибутку буде більшою. Рис. 4.5. Допустима множина портфелів з трьох акцій
Заштрихована область, точки котрої характеризують ступінь ризику та норму прибутку портфеля за усіх можливих часток окремих акцій в портфелі, називається допустимою множиною портфелів. Відрізок кривої МС належить до допустимої множини. Але для будь-якої точки цього відрізку не можна вказати іншої точки допустимої множини, для якої портфель був би кращим. Множина точок кривої МС називається ефективною множиною портфелів. Тобто ефективним портфелем з допустимої множини буде такий, для котрого не існує іншого: · з тим самим значенням величини норми прибутку і меншим ступенем ризику; · з тим самим значенням величини ризику і більшим значенням норми прибутку. Нехай ми маємо "n" різних цінних паперів, кожна пара яких пов'язана між собою певною кореляційною залежністю. Допустима множина портфелів, сформованих з цих цінних паперів, зображена на рис. 4.6, де відрізок кривої MN характеризує ефективну множину портфелів. Рис. 4.6. Вибір портфеля менеджерами с ризиковими функціями корисності Зазначимо, що опуклість кривої MN, котра характеризує ефективну множину, випливає з тих міркувань, що лінійна комбінація двох портфелів також є портфелем. Для двох менеджерів (управлінських команд, інвесторів) побудовані відповідні функції корисності, криві ліній байдужості яких зображені на рис. 6 (І —для першого менеджера, II — для другого менеджера). Вибір найкращого портфеля з ефективної множини, що відповідають множині точок кривої MN, буде залежати від функцій корисності (схильності або несхильності до ризику). Менеджер І обере портфель, позначений точкою N1, яка відповідає найбільшому значенню його корисності на ефективній множині портфелів. Менеджер II, що більш схильний до ризику, обере портфель з ефективної множини, позначений точкою N2.
|