Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Портфель з багатьох акцій.




Читайте также:
  1. Влияние глобализации экономики на распределение прямых и портфельных иностранных инвестиций.
  2. Выбор критериев для отбора инвестиционных проектов в портфель. Основные тезисы.
  3. Группировка страновых рынков при помощи портфельной матрицы
  4. ДИВЕРСИФИЦИРОВАННЫЙ ПОРТФЕЛЬ.
  5. Дослідження результатів портфельного аналізу
  6. Задачи и этапы портфельного анализа
  7. Инструменты портфельного анализа
  8. Інтерференція багатьох хвиль
  9. Курс акцій. Дивіденди і їх значення
  10. Определение доходности сущ. портфеля ценных бумаг, когда остается неизменным во времени и когда портфель изменялся в начале, середине, конце периода.

Перейдемо тепер до загального випадку, коли до складу портфеля залучено багато різних акцій.

Введемо такі позначення: n – кількість різних акцій, які входять до портфелю, що пронумеровані від 1 до n; mi – сподівана норма прибутку i-й акції , σi – ризик (розраховується як середньозважене відхилення) i-й акції , рij – коефіцієнт кореляції i-й и j-й акцій , (i ≠ j), хi - часка i-й акції, що включається до портфелю .

 

Очевидно, що

Аналогічно, як і у випадку двох різних акцій, так і в за­гальному випадку, потрібно вміти обчислювати сподівану норму прибутку i ризик портфеля.

Це здійснюють за допомогою таких формул:

;

σр = (Vр)0,5,

 

де трсподівана норма прибутку портфеля акцій,

Vрваріація (дисперсія) портфеля акцій,

σр - середньоквадратичне відхилення (ризик) портфеля акцій.

 

Варіацію, тобто ризик порт­феля, можна трактувати як суму двох складових. Перша складова віддзеркалює індивідуальний ризик кожної з акцій. Оскільки це середньозважена варіацій окремих акцій (ваговими коефіцієн­тами виступають квадрати часток акцій в портфелі); друга скла­дова характеризується взаємозв'язками між парами акцій Тобто показує вплив коефіцієнтів кореляції пар акцій на ризик портфеля: від'ємні величини коефіцієнтів кореляції призводять до зменшення варіації портфеля.

Приклад. Три акції А, В, С, пронумеровані 1, 2, 3, мають норми прибутку відповідно m1 = 5%, m2 = 10%, m3 = 15% середньоквадратичні відхилення і коефіцієнти кореляції приймемо вiдповiдно σ1 = 3%, σ2 = 7 %, σ3 = 10%, р12 = 0,6, р13 = - 0,2, р23 = -0,4. Визначити допустиму множину портфелів.

Позначені літерами А, В, С вершини відповідають портфелям, що сформовані лише з однієї акції А, В, С відповідно. Частка інших двох акцій дорівнює нулеві. Необхідно зазначити, що кожен розсудливий інвестор обере будь-який з портфелів, що відповідає множині точок, котрі лежать на відрізку МС, зображеної на рис. 4.5 фігури. Дійсно, для будь-якоїіншої точки, що міститься в межах даної фігури (таких, що не лежать на кривій МС)знайдеться відповідна точка на кривій МС, для якої при тому ж значенні величини ризику, норма прибутку буде більшою.

Рис. 4.5. Допустима множина портфелів з трьох акцій



 

Заштрихована область, точки котрої характеризують ступінь ризику та норму прибутку портфеля за усіх можливих часток окремих акцій в портфелі, називається допустимою множиною портфелів.

Відрізок кривої МС належить до допустимої множини. Але для будь-якої точки цього відрізку не можна вказати ін­шої точки допустимої множини, для якої портфель був би кращим.

Множина точок кривої МС називається ефективною мно­жиною портфелів.

Тобто ефективним портфелем з допустимої множини буде такий, для котрого не існує іншого:

· з тим самим значенням величини норми прибутку і меншим ступенем ризику;

· з тим самим значенням величини ризику і більшим значенням норми прибутку.

Нехай ми маємо "n" різних цінних паперів, кожна пара яких пов'язана між собою певною кореляційною залежністю.

Допустима множина портфелів, сформованих з цих цінних паперів, зображена на рис. 4.6, де відрізок кривої MN харак­теризує ефективну множину портфелів.

Рис. 4.6. Вибір портфеля менеджерами с ризиковими функціями корисності

Зазначимо, що опуклість кривої MN, котра характеризує ефективну множину, випливає з тих міркувань, що лінійна комбінація двох портфелів також є портфелем.



Для двох менеджерів (управлінських команд, інвесторів) по­будовані відповідні функції корисності, криві ліній байдужості яких зображені на рис. 6 (І —для першого менеджера, II — для другого менеджера).

Вибір найкращого портфеля з ефективної множини, що відповідають множині точок кривої MN, буде залежати від функ­цій корисності (схильності або несхильності до ризику).

Менеджер І обере портфель, позначений точкою N1, яка від­повідає найбільшому значенню його корисності на ефективній множині портфелів. Менеджер II, що більш схильний до ризику, обере портфель з ефективної множини, позначений точкою N2.


Дата добавления: 2015-04-04; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты