Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Корисність за Нейманом. Сподівана корисність.




Для визначення корисності розглянемо вибір особи за умов ризику, який формалізується за допомогою поняття лотереї.

Для цього необхідно з множини пред’явлених експертам значень певного економічного показника (об’єкта) виділити два х* и х* таких, що х* х для всіх х* Х та х* х для всіх х Х, тобто найменш пріоритетне, в певному сенсі, значення економічного показника (це буде «нуль» даної шкали інтервалів) і найбільш пріоритетне у певному сенсі значення показника (разом з «нулем» воно визначить масштаб даної шкали). Власне так побудована функція корисності Дж. Неймана і О. Моргенштерна. Експерту пропонують порівнювати альтернативу:

1) значення показника х;

2) лотерею: одержати х* з імовірністю (1 - р) чи х* з імовірністю (р). Величину імовірності р змінюють доти, доки, на погляд експерта, значення показника х і лотерея L (х*, р, х*) не стануть еквівалентними. Максимальному та мінімальному значенням х* та х* приписують довільні числові значення U*= U(х*) та U*= U(x*), але так, щоб U* > U*.


Поделиться:

Дата добавления: 2015-04-04; просмотров: 126; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты