Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Функція корисності з інтервальною нейтральністю.




Читайте также:
  1. В чому полягає методологічна функція соціології? Розкрійте її.
  2. В чому полягає пізнавальна функція соціології? Опишіть її.
  3. Використання рівняння Шредінгера до атома водню. Хвильова функція. Квантові числа
  4. Загальні засади та концепція теорії корисності.
  5. Зображення як функція
  6. Імовірність. Середні значення фізичних величин. Функція розподілу
  7. Квадратична функція, її властивості та графік.
  8. Корисність продукту. Закон спадної граничної корисності.
  9. Крок 1. Підключити модулі з керуючими структурами і функціями інтегрування
  10. Методика побудови функції корисності

Функція корисності з інтервальною нейтральністю відображає відношення до ризику особи, що приймає рішення за умов, коли результат знаходиться в певних межах. Якщо йдеться про весь інтервал змінення результатів, корисність якого оцінюють, то тут відношення до ризику не буде нейтральним.

Один із типів функції з інтервальною нейтральністю до ризику має такий вид.

U(x) = min (aix + bi).

Якщо ai> 0, то U(x) – зростаюча функція корисності, що характеризує несхильність до ризику, оскільки вона є опуклою вгору (рис. 5.4).

 

 

Рис. 5.4. Інтервальна нейтральність (глобальна несхильність) до ризику

Часто U(х) представляють у виді:

a1х + b1, 0 ≤ x ≤ x1,

a2x + b2, x1 ≤ x ≤ x2,

U(x) =

anx + bn, xn 1 ≤ x ≤ ∞.

 

де a1>a2 ……… > an, a b1 < b2 < bn, x1, x2, xn-1 – точки перетину графіків функцій a1x + b1 та a2x +b2, a2x +b2таa3x + b3 і т.д. Оскільки будь-який з доданків корисності не змінює її стратегічну еквівалентність, приймають b1=0.

На інтервалах [0, х1], [х1, х2], , [хn-1, ∞] функція буде нейтральною до ризику.

За допомогою функцій з iнтервальною нейтральністю до ризику можна з будь-якою точністю апроксимувати нелінійні функції корисності.

Для зручності інтервали нейтральності до ризику класифікують. Наприклад, інтервал [0,х1], зображений на рис. 5.4, є інтервалом з високою граничною корисністю, [х1, х2] — з середньою, [х2, ∞] - з низькою.

Функції інтегрально-нейтральні до ризику в багатьох випадках дають можливість перейти до лінійних залежностей. Нехай виникає потреба в максимізації функцій корисності U(x) = min (aix + bi):

U(x) = (aix + bi) → ,

де у — вектор параметрів деякої системи; D — множина допустимих пар (х,у).

Вважається, що ця задача еквівалентна задачі з лінійною функцією корисності:

U → ; U ≤ aix + bi; (i = 1, n; (x,y) D).

Якщо вектор результатів f складається з одного елемента (одноцільова задача), то відношення до ризику суб'єкта керування можна описати за допомогою функції корисності U(f). Існує досить багато конкретних типів функцій корисності.

Розглянута функція з інтервальною нейтральністю до ризику U(f) = (aif + bi), де a1 > a2 > … > an та 0 ≤ b1 < b2 ,< … < bn відображає глобальну несхильність до ризику на окремих інтервалах.



Функція U(f) = (aif + bi), де 0 < a1 < … < an та 0 ≥ b1 > b2 > … > bn,відображає глобальну схильність до ризику.


Дата добавления: 2015-04-04; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты