КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Решение. Грузоподъемность бруса – это максимальная нагрузка, которую он может выдержать, не разрушаясьГрузоподъемность бруса – это максимальная нагрузка, которую он может выдержать, не разрушаясь. Таким образом, необходимо определить требуемую нагрузку из условия прочности: Согласно эпюре , тогда условие прочности примет вид: Отсюда грузоподъемность бруса будет равна: Для определения удлинения стержня разбиваем его на участки. Каждый участок, должен иметь постоянную жесткость и величину продольной силы. Таким образом, для данного бруса получаем три участка (на рис. 2.15 они обозначены римскими цифрами), тогда абсолютная деформация в общем виде будет определяться выражением: , в котором каждое слагаемое определяется отдельно: где - значения продольных сил соответственно на первом, втором и третьем участках; - длины соответственно первого, второго и третьего участков; - значения модулей упругости материалов бруса для каждого участка; - площади поперечных сечений стержня на первом, втором и третьем участках. Поскольку жесткости всех трех участков одинаковые (балка изготовлена из одного материала и имеет постоянное по всей длине поперечное сечение), можно обозначить и вынести этот множитель за скобки. В результате получим выражение в виде: где , , , , .
|