КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Рівняння прямій і площиніРівняння прямої на площині в декартовії системі координат можна задати рівнянням виду
для випадку, коли пряма не паралельна осі OY, і рівнянням
для вертикальної прямої. Але пряма може бути також задана й іншим способом. Досить указати вектор напрямку цій прямій
у якому параметр t пробігає всі значення числової прямої. Координати крапки, що відповідає деякому значенню цього параметра, визначаються співвідношеннями
Пряму в просторі теж можна задавати параметричним рівнянням, що дуже легко одержати з попереднім простим переходом від двовимірних векторів до тривимірного. Нехай
Як відомо з елементарної геометрії, через будь-які три крапки в просторі проходить площина. З іншого боку, через кожну крапку площини можна провести єдину пряму, перпендикулярну даної площини. При цьому всі ці прямі будуть паралельні один одному, а виходить, вони мають загальний вектор напрямку. Цей вектор будемо називати нормаллю до площини. Якщо довжина вектора дорівнює одиниці, ми будемо називати його одиничною нормаллю. У комп'ютерній графіці часто доводиться вирішувати завдання побудови нормалі до деякої площини, заданої трьома крапками, а також завдання перетинання прямій із площиною й двох площин. Площина в просторі можна задати, указавши вектор нормалі до неї і яку-небудь крапку, що належить даної площини. Нехай
Розкриваючи це вираження в координатному виді, одержуємо
Тепер перепишемо це рівняння у вигляді
де В алгоритмах комп'ютерної графіки досить часто доводиться зіштовхуватися із завданням побудови площини, що проходить через три задані крапки. Нехай три крапки
Залишається визначити значення
отже
і після підстановки остаточно одержимо:
У більшості алгоритмів, що використовують площини, досить знати нормаль до неї і яку-небудь крапку, що належить площини. Очевидно, що за аналогією можна вивести канонічні рівняння прямої на площині, якщо задано нормаль до неї й приналежній прямій крапка.
|