КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Итерационные методыПри составлении проектов землеустройства часто приходится решать задачи, связанные с размещением на территории различных объектов производственной инфраструктуры, которые связаны с определенной сырьевой базой. Например, животноводческие комплексы и фермы располагают таким образом, чтобы они были как можно ближе к участкам с грузоемкими, малотранспортабельными культурами: орошаемыми культурными пастбищами, кормовыми прифермскими севооборотами и т.д. Пункты переработки сельскохозяйственной продукции (сахарные, спиртовые, эфиромасличные и другие заводы) размещают, как правило, в центре сырьевой зоны или ближе к сельскохозяйственным предприятиям, которые дают максимальное количество сырья. Основное правило заключается в том, что пункты потребления (переработки) продукции размещают в центре тяжести обслуживаемого массива. Если грузоемкость всех участков одинакова, то необходимо смещение этих пунктов в сторону тех участков (пунктов отправления продукции), которые дают наибольшее количество сырья, кормов и т. д. Для решения такой задачи применяются итерационные методы, или методы последовательных приближений. Суть этих методов состоит в том, что в ходе расчетов постепенно приближают первоначально полученное решение к оптимальному. Методы сетевого планирования и управления Сетевой моделью (сетевым графиком, сетью)называется экономико-математическая модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и, во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений. Математический аппарат сетевых моделей базируется на теории графов. Графом называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т.е. на каждом ребре задается направление, то граф называется ориентированным,в противном случае – неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь. Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным. В экономике чаще всего используются два вида графов: дерево и сеть. Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями. Сеть – это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть». В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ). Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п. Основой СПУ является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы. Основные понятия СМ: событие, работа и путь. На рисунке 2 графически представлена СМ, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами. Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее лишь взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i,j), где i – номер события, из которого работа выходит, а j – номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i,j). Например, запись t (2,5) = 4 означает, что работа (2,5) имеет продолжительность 4 единицы. К работам относятся также такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками (работа (6,9)).
Рис. 2. Сетевая модель Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении СМ изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2, ..., N). В СМ имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят. Путь – это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в модели, показанной на рисунке 2, путями являются L1 = (1, 2, 3, 7, 10, 11), L2 = (1, 2, 4, 6, 11) и др. Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают Lкр, а его продолжительность – tкр. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ. СМ имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов. Однако перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям: 1. События правильно пронумерованы, т.е. для каждой работы (i, j) i <j (рис. 3, работы (4,3) и (3,2)). При невыполнении этого требования необходимо использовать алгоритм перенумерации событий, который заключается в следующем: нумерация событий начинается с исходного события, которому присваивается № 1; из исходного события вычеркивают все исходящие из него работы (стрелки), и на оставшейся сети находят событие, в которое не входит ни одна работа, ему и присваивают № 2; затем вычеркивают работы, выходящие из события № 2 и вновь находят событие, в которое не входит ни одна работа, и ему присваивают № 3, и так продолжается до завершающего события, номер которого должен быть равен количеству событий в сетевом графике; если при очередном вычеркивании работ одновременно несколько событий не имеют входящих в них работ, то их нумеруют очередными номерами в произвольном порядке. 2.Отсутствуют тупиковые события (кроме завершающего), т.е. такие, за которыми не следует хотя бы одна работа (событие 5); 3. Отсутствуют события (кроме исходного), которым не предшествует хотя бы одна работа (событие 7); 4. Отсутствуют циклы, т. е. замкнутые пути, соединяющие событие с ним же самим (см. путь (2,4,3)). Рис. 3. Примеры ошибок при построении сетевой модели При невыполнении указанных требований бессмысленно приступать к вычислениям характеристик событий, работ и критического пути. Для событий рассчитывают три характеристики: ранний и поздний срок совершения события, а также его резерв.
|