КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Примеры построения эпюры продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а).
в опорах. Участок 1: ΣFz = 0; - 3F + N1 = 0; N1 = 3F. Продольная сила положительна, участок 1 растянут. Участок 2: ΣFz = 0; -3F + 2F + N2 = 0; N2 = = F. Продольная сила положительна, участок 2 растянут. Участок 3: ΣFz = 0; -3F + 2F + 5F - N3 = 0; N3 = 4F. Продольная сила отрицательна, участок 3 сжат. Полученное значение Nз равно реакции в заделке. Под схемой бруса строим эпюру продольной силы (рис. 20.26).
эпюра очерчивается отрезками прямых линий, параллельными оси Oz. Правило контроля: в месте приложения внешней силы на эпюре должен быть скачок на величину приложенной силы. На эпюре проставляются значения Nz. Величины продольных сил откладывают в заранее выбранном масштабе. Эпюра по контуру обводится толстой линией и заштриховывается поперек оси. Изучая деформации при растяжении и сжатии, обнаруживаем, что выполняются гипотеза плоских сечений и принцип смягчения граничных условий. Гипотеза плоских сечений заключается в том, что поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси. Следовательно, продольные внутренние волокна удлиняются одинаково, а внутренние силы упругости распределены по сечению равномерно. Принцип смягчения граничных условий гласит: в точках тела, удаленных от мест приложения нагрузки, модуль внутренних сил мало зависит от способа закрепления. Поэтому при решении задач не уточняют способ закрепления. Напряжения при растяжении и сжатии При растяжении и сжатии в сечении действует только нормальное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким образом, направление и знак напряжения в сечении совпадают с направлением и знаком силы в сечении (рис. 20.3). Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. Поэтому напряжение можно рассчитать по формуле
Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а), а при сжатии к сечению (рис. 20.46). Размерность (единица измерения) напряжений — Н/м2 (Па), од-
Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений. Строится и оформляется такая эпюра так же, как и эпюра продольных сил.
; (н/мм2, МПа) , =20*103/ 2*300= 3,33МПа = 20*103/ 300=6,66 МПа =-10*103/300=-3,33 МПа Строим эпюры продольных сил и нормальных напряжений. Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.
|