КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения внутренних силовых факторов пользуемся методом сечений. Рассмотрим равновесие участка 1 (рис. 29.36). Под действием внешней пары сил участок стремится развернуться по часовой стрелке. Силы упругости, возникающие в сечении 1, удерживают участок в равновесии. Продольные силы упругости выше оси бруса направлены на- право, а силы ниже оси направлены налево. Таким образом, при равновесии участка 1 получим: ΣFz = 0. Продольная сила N в сечении равна нулю. Момент сил упругости относительно оси Ох может быть получен, если суммировать элементарные моменты сил упругости в сечении 1-1 относительно оси Ох: . Этот момент называют изгибающим моментом Мх = Ми. Из схемы вала на рис. 29.36 видно, что часть волокон (выше оси) испытывают сжатие, а волокна ниже оси растянуты. Следовательно, в сечении должен существовать слой не растянутый и не сжатый, где напряжения а равны нулю. Такой слой называют нейтральным слоем (НС). Линия пересечения нейтрального слоя с плоскостью поперечного сечения бруса называют нейтральной осью. Нейтральный слой проходит через центр тяжести сечения. Здесь нейтральный слой совпадает с осью Ох. Рис.
Практически величина изгибающего момента в сечении определяется из уравнения равновесия: ; . Таким образом, в сечении 1-1 продольная сила равна нулю, изгибающий момент в сечении постоянен. Изгиб, при котором в поперечном сечении бруса возникает только изгибающий момент, называется чистым изгибом. Рассмотрим равновесие участка бруса от свободного конца до сечения 2 (рис. 29.Зв). Запишем уравнения равновесия для участка бруса: ; ; . В сечении бруса 2-2 действует поперечная сила, вызывающая сдвиг. ; . Изгибающий момент в сечении: МХ2 = т - F(z2 - а); z2 — расстояние от сечения 2 до начала координат. Изгибающий момент зависит от расстояния сечения до начала координат. Изгиб, при котором в поперечном сечении бруса возникает изгибающий момент и поперечная сила, называется поперечным изгибом.
|