Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Мичио Каку 13 страница




Дети третьего года жизни в разных условиях правильно пони­мают и соотносят слова много, мало в пределах пяти предметов.

На третьем году жизни количественная сторона множеств по­степенно начинает абстрагироваться от предметного содержания. У детей появляется умение действовать по указанию, что свиде­тельствует об интеллектуальной активности. Так, приняв задание положить предметы одной совокупности на предметы другой, ре­бенок старается поставить столько игрушек, сколько кружков на­рисовано на карточке. У детей появляется интерес к подобным действиям, что создает основу для понимания отношений больше, меньше, равно. Овладение детьми умением сочетать слова больше, меньше с названиями сравниваемых предметов («больше, чем кукол»), использование слова лишние свидетельствует о понима­нии сути отношений равенства, неравенства.

Постепенно дети начинают овладевать способом простейшего сравнения элементов двух множеств. Они накладывают (прикла­дывают) предметы одной совокупности на предметы другой, уста­навливая между ними взаимнооднозначное соответствие, и видят равенство их по количеству. Однако они часто допускают ошибки, заполняя промежутки между изображениями. По данным В. В. Даниловой, наиболее доступными для различения и осмы­сливания отношения больше — меньше являются сочетания пред­метов в количестве: 1 и 3, 2 и 4, 5 и 2, 3 и 5.

Дети 3-х лет дифференцируют звуки (при двух и четырех уда­рах). В условиях игры они правильно отвечают на вопрос «Кто по­стучал много, кто — мало, кто — один раз?»

Итак, к трем годам, о чем свидетельствуют результаты иссле­дования В. В. Даниловой, происходят значительные качественные изменения в восприятии и сравнении детьми множеств. Дети на­чинают выделять количество. Они проявляют способность разли­чать множества предметов и множества звуков, самостоятельно создавать множества из предметов, усваивать смысл слов много, мало, один, относить их к соответствующим группам предметов, звуков, движений.

Обозначение количества предметов числом не всегда связано с попыткой считать. У детей 2—3-х лет чаще всего называние ко­личества предметов числом основано на их зрительном воспри­ятии: 1 и еще 1 — это 2; 1, 1 и 1 — это 3. Слова, обозначающие количество, дети заимствуют из речи взрослых. Иногда взрослые ошибочно называют это явление счетом.

Современные дети обозначают небольшие совокупности предметов (1—3) числами; приносят по просьбе взрослого некое количество предметов; иногда соотносят количество с цифрой, которая является для них пока предметом, игрушкой, «рисунком числа» (О. К. Смолякова, Н. В. Смолякова).

Действия ребенка в этом возрасте зависят от его эмоциональ­ного состояния, обстановки. Он может называть количество пред­метов в одних ситуациях и совершенно не ориентироваться в ко­личественных отношениях в других.

Так, девочка двух с половиной лет сложила кубики в два ряда — один ряд полу­чился длиннее другого. Она закричала: «Папа, где еще два кубика? Почему не хвата­ет ?» Отец переложил один кубик из одного ряда в другой. Посмотрела с интересом, но вернула его обратно: «Не хватает!»

Тенденция к сосчитыванию появляется у детей довольно рано (в конце третьего — начале четвертого года), что свидетельствует о стремлении ребенка ответить на вопрос «Сколько всего?»

Предметные действия детей раннего возраста (1,5—2,5 года) являются пропедевтикой счетной деятельности. Активно дейст­вуя, дети разбрасывают предметы или, наоборот, собирают их. Как правило, все одинаковые действия сопровождаются повторе­нием одного и того же слова: «вот.., вот.., вот...», или «еще.., еще.., еще...», или «на.., на.., на...»; или хаотическим называнием чисел: «два, один, пять...» Иногда каждое повторяемое ребенком слово соотносится с одним предметом или с одним движением, между словом и предметом устанавливается соответствие. Слово помо­гает выделить элемент из множества однородных предметов, дви­жений, более четко отделить один предмет от другого, способст­вует ритмизации действий. Дети легко усваивают простые считал­ки, отдельные слова-числительные и используют их в процессе движений, игр.

В раннем возрасте (2—3 года) дети от хаотического познания числительных переходят к усвоению последовательности чисел в ограниченном отрезке натурального ряда. Как правило, это числа 1,2, 3.

Дальнейшее упорядочение чисел происходит следующим обра­зом: увеличивается отрезок запоминаемой последовательности числительных, дети начинают осознавать, что каждое из слов-чис­лительных всегда занимает свое определенное место, хотя они еще не могут объяснить, почему три всегда следует за двумя, а шесть — за пятью. При этом возникают рече-слухо-двигательные связи между называемыми числительными.

В усвоенной цепочке слов {раз, два, три и т. д.) для ребенка невозможна замена слова раз словом один: образовавшиеся связи разрушаются, и ребенок молчит, не зная, что должно следовать за словом один (в некоторых же случаях в угоду старшим ребенок (2,5—3 года) называет слово один как предшествующее всей вы­ученной им цепочке).

Встречаются и такие случаи, когда ребенок первые два-три слова-числительные воспринимает как одно слово. Называя их, он делает ударение на первом слоге: «раздватри» или «раздва». В таких случаях он относит этот комплекс слов к одному движе­нию или предмету.

Таким образом, в раннем возрасте под влиянием активных действий с предметными совокупностями у детей складывается рече-слухо-двигательный образ натурального ряда чисел. У них появляется интерес к сравнению предметов по их размеру и чис­ленности. Подобное поведение характеризует в основном детей начала третьего года жизни и может рассматриваться как качест­венно новый этап в развитии счетной деятельности.

Вслед за рече-слухо-двигательным образом ряда чисел у детей 3—4-летнего возраста успешно формируется слуховой образ нату­рального ряда чисел. Он, как правило, «пространственный». Слова-числительные выстраиваются в ряд и называются по поряд­ку, но происходит это постепенно. Вначале упорядочивается лишь некоторое множество числительных, после него числительные на­зываются хотя и с промежутками, но всегда в возрастающем поряд­ке: 1,2,3,4,5,6,8,10,12,15,16 ит. д. Усвоив числительные первого десятка, дети легко переходят ко второму десятку, а дальше считают так: «Двадцать десять, двадцать одиннадцать» и т. д. Но стоит ре­бенка поправить и назвать после двадцати девяти число тридцать, как стереотип восстанавливается и ребенок продолжает: «Тридцать один, тридцать два,.., тридцать девять, тридцать десять» и т. д. Не­которые дети начинают при этом понимать, что после двадцати де­вяти, тридцати девяти, сорока девяти имеются особые слова, назва­ния которых они еще не знают. В таких случаях дети делают паузу, ожидая помощи взрослого.

Счет в этот период очень однообразен. Дети называют слова-числительные: раз (в значении один), два, три, другой (второй), третий и др., показывая при этом на предметы. На вопрос «Сколько?» они вновь начинают пересчитывать. Это свойственно всем детям на начальном этапе овладения счетной деятельностью. Они осваивают процесс счета (название чисел, отнесение их к предметам), но последнее названное при этом слово-числитель­ное не соотносят со всем множеством. Такой счет является «безы­тоговым» (Н. А. Менчинская).

В возрасте 3—4-х (а иногда и 5) лет дети, освоившие счет, не могут ответить на вопрос «Какое из чисел идет до числа 4, а какое — после?» Они начинают или восстанавливать (на паль­цах) ряд чисел, или слова до и после заменяют словами впереди, сзади и, называя следующее число, рассматривают его как впереди стоящее. Многие дети, называя следующее число, не могут на­звать предыдущее. В ответ на просьбу найти число, большее на единицу, они мысленно или вслух начинают называть слова-чис­лительные всего ряда, начиная с раз. Дети понимают, что каждое следующее число больше предыдущего, однако точного представ­ления о предыдущем и следующем числе у них еще нет, что лиша­ет их возможности сразу назвать число, большее или меньшее ука­занного на единицу.

Увеличение и уменьшение множеств, а затем и чисел ребенок 4—5 лет осуществляет практически, добавляя 1 или 2 предмета или убирая их. При этом он проговаривает свои действия, резуль­тат. Речь активизируется в условиях игровой ситуации. Но, срав­нивая численности множеств (игрушек больше, чем стульев), дети, как правило, определяют большее из них по дальности его от начала сосчитывания или как находящееся впереди (сзади) ка­кого-либо числа. Это свидетельствует о недостаточном освоении детьми способа получения каждого из чисел (в пределе 5, 10) путем увеличения или уменьшения другого числа на единицу.

Интерес к количественной оценке объема жидкости, массы, сыпучих веществ, длины, ширины, высоты предметов появляется у детей в процессе накопления опыта познания свойств и отноше­ний между предметами, простейших процедур экспериментиро­вания, упражнений в счете. В 4—5 лет они стремятся самостоя­тельно «измерить», например, объем подкрашенной жидкости путем переливания ее в другую емкость или разливая ее в несколь­ко емкостей (разных или одинаковых по размеру). Естественно, что в спонтанной деятельности детей больше всего интересуют процессы пересыпания, переливания, но не остаются незамечен­ными ими и некоторые взаимосвязи и закономерности.

Умения вычислять дети осваивают самобытно. При необходи­мости увеличить число (количество предметов), а затем и умень­шить его пользуются пересчитыванием. К числу три число два дети прибавляют так: 1, 2, 3 (короткая пауза), 4, 5. Они удерживают в памяти число (первое слагаемое) и к нему присчитывают два. Дети пользуются предметами, перекладывают их, добавляют, отодвига­ют, пытаясь при этом устанавливать числовые отношения. Особен­но детям интересны при этом мелкие камешки, желуди, орехи.

Зависимость восприятия численности от пространственно-качественных особенностей множеств

На восприятие детьми численности оказывают влияние раз­личные качественные и пространственные свойства предметов: способ расположения предметов в пространстве, размер занимае­мой ими площади, длина и плотность ряда предметов, размер, цвет, форма, назначение. Это свойственно в основном детям младшего дошкольного возраста (2—4 года) и объясняется недиф-ференцированностью восприятия, недостаточно развитой спо­собностью абстрагироваться от несущественного при восприятии и оценивать количество по заданному признаку. При восприятии и воспроизведении у детей множеств доминируют наиболее яркие признаки (цвет, расположение). Опознавательным признаком на данном уровне является не количество, а однородность по цвету, форме, пространственному расположению.

В зарубежной и советской психологии эта особенность вос­приятия детьми количества нашла отражение в работах Ж. Пиаже, Л. Ф. Обуховой.

Л. Ф. Обухова выявила последовательность освоения детьми принципа сохранения количества. От отсутствия понимания со­хранения, когда видимое выдается за действительное, дети пере­ходят к пониманию сохранения на небольших количествах и к полному признанию сохранения количества (инвариантности), неизменности количества при различных его видоизменениях.

Для понимания независимости количества предметов от их несущественных свойств необходимо осмысление детьми проти­воречий между внешними признаками предметов, познаваемы­ми визуально, и числовыми, познаваемыми на основе счета. По мнению Ж. Пиаже, это выражается в усвоении идеи числа сле­дующим образом: число объектов в группе «сохраняется» неза­висимо от того, как их растасовать или расположить (Пиа­же Ж. Как дети образуют математические понятия // Вопросы психологии, 1966, №4).

В работах психологов и математиков-методистов выявлена также зависимость воспроизведения детьми количества от спосо­ба расположения предметов в пространстве: линейного и в виде числовой фигуры (числовая фигура — карточка, на которой опре­деленное количество точек расположено удобным для восприятия способом).

Расположение предметов в виде числовой фигуры в большей мере, нежели линейное, способствует восприятию множества как целостного единства, но затрудняет восприятие отдельных эле­ментов.

Наблюдения за детьми позволяют сделать вывод о том, что множество, изображенное в виде числовой фигуры, действитель­но воспринимается как единое замкнутое целое, но точное коли­чество его элементов не воспроизводится. Однако в этот же пери­од численность линейно расположенного множества начинает воспроизводиться адекватно. Из этого следует, что чем младше дети, тем большее значение для восприятия количества приобре­тает линейное расположение предметов. Пользуясь приемом на­ложения пуговиц на рисунки, дети уже в возрасте трех лет точно воспроизводят количество предметов, если они расположены в ряд.

Резюме

W« Ребенок дошкольного возраста активно осваивает числа в си­туациях непосредственного использования результатов счета, сравнения в значимых для него видах деятельности: игре, вы­полнении аппликаций, играх-экспериментированиях с водой и песком.

Познание количественных и числовых отношений — длитель­ный процесс. Постепенное осознание числа как показателя количества состоит в «узнавании» количества без счета; отне­сении числа к количеству на основе сосчитывания, использо­вании ряда чисел на основе выделения отношений между ними. Многое из этого осваивается ребенком путем подража­ния действиям и речи взрослого, старшего ребенка в семье. Из краткой характеристики основных теоретических положе­ний, на которых базируется конструирование технологий, способствующих освоению детьми дошкольного возраста чисел и цифр, следует необходимость осознания педагогом выбора и применения наиболее эффективных и значимых в конкретных педагогических условиях методик и технологий.

®" Исторически сложившееся в методике первоначального обу­чения арифметике расхождение во взглядах на вопрос «С чего начинать?

отражено в изложенных концепциях. Ответом может быть: с познания свойств предметов, с действий с мно­жествами, с числа, с измерения и т. д.

W° Предложенная в данном учебном пособии методика развития у детей количественных и числовых представлений основыва­ется на синтезе идей и взглядов разных исследований.

Литература

1. Брушлинский А. В. Некоторые вопросы детского мышления в условиях освоения счета / Теории и технология математического развития детей дошкольного возраста. Сост.: З.А.Михайлова, Р. Л. Непомнящая, М. Н. Полякова.— М.: Центр педагогического образования, 2008.

2. Гальперин П. Я., Георгиев Л. С. Формирование начальных ма­тематических понятий. Там же.

З.Данилова В. В. Особенности понимания количественных от­ношений совокупности детьми 2—3-х лет. Там же.

4. Лебединцев К. Ф. Современные педагогические исследова­ния в области вопросов, связанных с методикой начальной мате­матики. Там же.

5. Леушина А. М. Развитие представлений о множестве в ран­нем детстве. Там же.

6. Менчинская Н. А. Пути формирования первоначального по­нятия о числе у детей до школы. Там же.

7. Смолякова О. К., Смолякова Н. В. Математика для дошколь­ников: В помощь родителям при подготовке детей 3—6 лет к школе.— М.: Издат-школа, 1992.

8. Чуприкова Н. И. Начальные этапы развития счета / Теория и технология математического развития детей дошкольного воз­раста. Сост.: 3.А. Михайлова, Р.Л. Непомнящая, М.Н.Поляко­ва. — М.: Центр педагогического образования, 2008.

Вопросы и задания для самоконтроля

© Почему Г. С. Костюк назвал «компромиссным» подход К. Ф. Лебединцева к развитию у детей числовых представле­ний?

© Выскажите свое отношение к мысли Т. Леви о том, что ребе­нок различает количество привычных предметов задолго до того, как научится говорить.

© Ответьте на вопрос ребенка пяти лет: «Число 7 бежит впереди шестерки? Да?»

© Скорректируйте высказывание мамы: «Мой Саша (6 лет) уже считает до 50. Я так рада!»

© Какие основные особенности ребенка-дошкольника надо учитывать в процессе освоения им чисел, цифр, количествен­ных отношений? (По результатам исследований Н. И. Непом­нящей, П. Я. Гальперина, А. М. Леушиной.)

© Возможно ли использование методического приема «Матема­тика за окном»? Если да, раскройте методику использования в детском саду и семье.

Содержание развития у детей количественных и числовых представлений

Представление о числах, их последовательности (порядке сле­дования: 1, 2, 3...), отношениях (=, Щ больше, меньше на 1, на 2), месте в натуральном ряду развивается у детей под влиянием дей­ствий с совокупностями объектов; счета; сравнения множеств и чисел; измерения протяженностей по длине, высоте, ширине и обозначения результата числом (цифрой); практического увели­чения и уменьшения чисел на 1, 2; решения простейших арифме­тических задач (на эмпирическом уровне).

Далее представлено содержание развития количественных и числовых представлений у детей третьего и четвертого годов жизни.

• Разнообразные манипулятивные действия с множествами предметов, ориентировка в их цвете, размере, форме, количе­стве {один, много, много — мало) в совместных со взрослым действиях в специально организованной предметно-игровой среде.

• Представления о единичности, умение отделять один предмет от другого, приговаривая: «Один, еще один, еще один» и т. д.

• Представления об относительности слов мало — много (про­слеживание за изменением ситуации: много яблок, мало слив, затем — много груш, а слив по-прежнему мало).

• Поэлементное сравнение предметов по количеству (наложе­нием, приложением); установление соответствия. Осуществ­ление сравнения предметов на дочисловом уровне (столько же, больше чем) и по числу (там, где 3 — больше, где 2 — мень­ше). Выделение лишнего предмета и уравнивание по количе­ству; указание на множество, в котором, не хватает предмета.

• Перечисление однородных и разнородных по составу мно­жеств: один, еще один, еще один и т. д.; называние характе­ристических свойств элементов множества: цвет, размер, форма.

• Восприятие «чисел», называние количества (1, 2, 3). Выбор со­ответствующих цифр.

• Пересчет предметов при поддержке взрослого (до 3—4-х лет).

• Независимость численности множества предметов (в пределах 5 элементов) от способа расположения предметов в простран­стве (на расстоянии, рядом, в виде круга, ряда и т. д.).

• Воспроизведение множеств предметов, звуков, движений (за­данных в образце в количестве от 1 до 5).

В процессе разнообразных практических действий с совокуп­ностями дети усваивают и используют в своей речи простые слова и выражения: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из; все, всех.

По просьбе взрослого объясняют и интерпретируют: «Возьму еще один и положу», «Стало», «Становится меньше», «Каждому зайцу дали по морковке», «Всех кукол угостили конфетами», «Этот круг лишний, он мне не нужен», «Квадратов не хватило, значит, их меньше», «Постучал столько же раз» и т. д.

Объяснение своих действий требует от детей использования в речи не только простых, но и более сложных предложений с со­юзами а, и, отрицанием не, частицей чем: «В шкафу много игру­шек, и на полу много», «Большие и маленькие шары положили в коробку», «Красные шары положили в красную коробку, а синие — в синюю», «Здесь красные флажки, а этот — не крас­ный», «Мишек меньше, чем кукол».

На пятом году жизни у детей систематизируются представле­ния о счете как способе обозначения количества числом. Уточня­ется цель (ответить на вопрос «Сколько всего?»), средство дости­жения (процесс сосчитывания), назначение результата (получить число, назвать его и обозначить цифрой).

Дети осваивают следующее.

• Сравнение множеств (поэлементно, на основе зрительного восприятия, проведения линий от одного предмета к другому и т. д.) с определением количественных отношений числом; с выделением различия на 1 элемент, увеличения или уменьше­ния одного из сравниваемых множеств, что помогает ребенку понять способ образования как большего, так и меньшего числа.

• Умения отсчитывать количество предметов названных, пока­занных счетной карточкой, цифрой; воспроизводить заданное количество; выполнять просьбы взрослого: «возьми и передай Гале 4 флажка»; «отдай 2 карандаша из пяти имеющихся».

• Согласование числительных с существительными в роде, числе, падеже: одна утка; один мяч; одно окно. В отдельных случаях ребенок может пользоваться словом предмет; началь­ным при счете является числительное один; общее количество называется как «четыре предмета посуды».

• Подсчет звуков (на слух), предметов, спрятанных в «чудесном мешочке» (по осязанию), движений другого человека (на ос­нове зрительного восприятия), собственных движений (на ос­нове тактильных ощущений). • Освоение порядка следования чисел и использование поряд­ковых числительных в практической деятельности: при опре­делении номера дома; места животного, направляющегося к водопою в общей «цепочке». Ответы на вопросы «Который?», «Какой по порядку?»

В процессе практических действий с множествами предметов, счета и сравнения дети овладевают словами и выражениями: число (здесь столько же, тоже три, первый, пятый, последний), пара (разложил в ряд, подложил один предмет под другой, составил пары, добавил один предмет, убрал один предмет, стало меньше, со­считал, отсчитал столько, сколько нарисовано) и др. При этом они упражняются в построении простых и сложных предложений со связками (и, а, если, то), объяснении своих действий, умении за­давать простые вопросы со словом сколько о количестве предметов в комнате, на картине.

Дети учатся выражать в речи не только результат своих дейст­вий, т. е. отвечать на вопрос «Что ты сделал?», но и способ выпол­нения действия. Сначала по вопросам педагога, а затем самосто­ятельно они объясняют ход своих действий. Дети начинают адек­ватно понимать выражения, употребляемые педагогом: «Сравни по количеству», «Какое из чисел больше?», «Если звуков столько же, сколько предметов, то сколько их?», «Равны по количеству», «Не равны по числу».

В пять лет ребенок владеет счетом до 8—10; число восприни­мается им как итог счета, показатель определенного количества предметов, опознавательный и различительный признак несколь­ких множеств. Поясним. Число 5 и соответствующая цифра пока­зывают на то, что кошек, игрушек, столов по 5. Их количество одинаково. Количество элементов первого, второго, третьего множества выражено одним и тем же числом. Для ребенка пяти лет число является результатом измерения, деления целого на не­равные и равные части.

На шестом году жизни дети осваивают следующее. • Осознание независимости количества предметов от занимаемой

ими площади. Предметы одной совокупности раскладываются по горизонтали на близком расстоянии друг от друга, вто­рой — на более далеком расстоянии. Выделяется общий при­знак предметов, входящих в каждое из множеств. Затем дети по заданию педагога находят отличительные признаки. Это могут быть цвет, форма, размер и т. д. Особо подчеркиваются различия в расстоянии между предметами, а отсюда и в зани­маемой каждой совокупностью площади, т. е. в плотности и длине ряда. Количество несущественных признаков в подоб­ных упражнениях нарастает. Первые упражнения следует про­водить с использованием однородного материала, при этом подчеркивается, что различие между множествами лишь одно — занимаемая площадь. После противопоставления (предметы расположены близко один к другому, поэтому они занимают мало места, и наоборот) педагог предлагает детям найти способ определения равенства или неравенства количе­ства элементов в множествах: «Как вы считаете, поровну пред­метов или нет? Как это доказать? В чем вы убедились?»

• Умение разбивать совокупности из 4, 6, 8, 10 предметов на группы по 2, 3, 4, 5 предметов, определять количество групп и отдельных предметов.

• Освоение состава числа из единиц на конкретных предметах и в процессе измерения, что уточняет и конкретизирует пред­ставление о числе, единице, месте числа в натуральном ряду чисел.

• Различение количественного и порядкового значения числа, применение количественного и порядкового счета в практи­ческой деятельности.

• Деление целого (предмет, геометрическая фигура) на 2, 3, 4 равные части, установление зависимостей между частью и целым, частями целого.

• Освоение умения пользоваться в речи понятиями (словами), отражающими количественные отношения: поровну, столько же, одинаково по количеству, такое же число, не поровну, число, цифра, наложение, приложение, составление пар, часть, целое, половина, четверть и др.

• Использование в речи простых и сложных предложений, крат­ких и точных выражений; объяснение полученного результа­та; ответы на вопросы «Что ты сделал?», «Что ты узнал?», «Как достичь результата?» Усиливается внимание к осмыслению вопросов со словами столько, который, адресованных сверст­никам, воспитателю.

• Понимание смысла слов, которые использует воспитатель: коли­чество, сравни по количеству, отсчитай, по сколько, признак и т. д.

• Сравнение множеств, отличающихся на 2, 3, с целью позна­ния отношений: на сколько больше (меньше).

• Умение сосчитывать небольшие совокупности (3—5 предме­тов) быстро, на основе только зрительного восприятия, запо­минать числа.

• Умения составлять объемные и плоские «числовые лесенки» (модели и схемы) из однородных и разнородных картинок, объектов.

• Освоение измерения условными мерками, определение ре­зультата. Ответы на вопросы «Скольким меркам равна длина скакалки?», «Где больше воды: в бутылке или банке?», «Какты это узнал?», «Что нужно сделать, чтобы проверить, не ошибся ли ты?» Эти упражнения способствуют познанию числа как отношения измеряемой величины к мере измерения.

• Освоение состава чисел из двух меньших чисел. Запоминание результатов в процессе практических упражнений и использо­вание их в процессе решения арифметических задач (исклю­чая освоение понятий: условие, решение).

Современные технологии развития числовых представлений в дошкольном возрасте

Выбор технологий развития количественных и числовых представлений зависит от выделения ведущего в этом процессе действия (способа познания), определяющего успешность. Такой детской деятельностью является сосчитывание (счет) как основа развития у детей представлений о числе.

При выборе и разработке эффективных приемов развития у детей дошкольного возраста числовых представлений учитывает­ся следующее.

• Степень освоенности детьми 3—4-х лет свойств предметов (цвета, формы, размера); умения осуществлять группировку и упорядочение, сравнивать предметы по разным признакам, в том числе и по количеству. Эти умения обеспечивают успех в овладении счетом и переход к обобщению групп предметов по числу. В ходе упражнений по овладению счетом у детей фор­мируется представление о числе как общем признаке как раз­нородных по своему составу (кукла, мишка, куб, книга), так и однородных множеств (только квадраты).

• Признание положения, согласно которому счет для ребенка дошкольного возраста является жизненной потребностью; ов­ладение процессом счета осуществляется наиболее успешно при условии постоянной стимуляции практических действий, восприятия и мышления (Сколько? Чего меньше? Как увели­чить? Если добавить 2, то...) при одновременном практикова-нии в применении чисел и цифр.

• Необходимость индивидуализации процесса развития количе­ственных представлений. Из этого следует тенденция к кон­струированию технологии относительно ребенка (нужно избе­гать ограничений возможности познания ребенком чисел в каком-либо пределе; выравнивания уровня познания чисел разными детьми).

• П оложение о том, что ребенку дошкольного возраста доступна лишь степень наглядного оперирования числами. Имеют место разные подходы к определению счета: как процесс установле­ния соответствия между элементами множества и числами на­турального ряда; как выявление общего, неизменного, что ха­рактеризует несколько равночисленных множеств и др.

• При упражнении детей в счете и вычислениях следует учиты­вать взаимосвязь этих деятельностей: действие увеличения (сложения) рассматривается как «счет вперед», а действие уменьшения (вычитания) — как «счет назад» (Г. Фройден-таль). При вычислениях, как правило, используются только однородные предметы: палочки, квадраты и т. д. Если нужно из 7 вычесть 3 (число 7 уменьшить на 3), то при наличии семи предметов можно, пользуясь умением называть числа в обратном порядке, отсчитать 3: 7, 6, 5. Затем оставшиеся предметы пересчитать или сразу назвать оставшееся коли­чество: 4.

Педагогические технологии, используемые в процессе разви­тия у детей количественных представлений и определяемые как проблемно-игровые, разнообразны. Это проблемные ситуации и задачи, математические игры и упражнения, литературные текс­ты, учебно-познавательные книги и рабочие тетради, творческие задачи и экспериментирование, моделирование и схематизация и др. Такие средства стимулируют естественную активность по­знания ребенком чисел и цифр, развивают познавательный ин­терес, воспитывают эмоционально-ценностное отношение к по­знанию, прививают культуру познания. Технологии используют­ся, как правило, интегрированные, представленные сенсорными способами познания (обследование, выделение отдельностей, счет, соотнесение один к одному), практическими (сравнение, уравнивание, комплектование); игровыми (приемы «расселения» жильцов, совмещения карточек, размещения игрушек, составле­ния ковриков и отправления поездов); речевыми (комментиро­вание действий, результатов, использование терминологии); схе­матизацией (цифры, знаки, модели числового ряда).


Поделиться:

Дата добавления: 2014-10-31; просмотров: 282; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты