КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Область определения функции, в которой есть дробьПредположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции. Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби: Пример 1 Найти область определения функции Решение: в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки: Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции. Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль. Ответ: область определения: Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Значок обратного слеша в математике обозначает логическое вычитание, а фигурные скобки – множество. Ответ можно равносильно записать в виде объединения трёх интервалов: Кому как нравится. В точках функция терпит бесконечные разрывы, а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание. Пример 2 Найти область определения функции Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока. Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: . Рекомендую запомнить, при любом значении «икс» и положительной константе: Все функции наподобие определены и непрерывны на . Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен: Пример 3 Найти область определения функции Решение: попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение: Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси. Ответ: область определения: Пример 4 Найти область определения функции Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.
|