КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задачи для самостоятельного решения. Задача 1.Колесо вращается вокруг неподвижной оси так, что угол его поворота зависит от времени как ⇐ ПредыдущаяСтр 4 из 4 Задача 1.Колесо вращается вокруг неподвижной оси так, что угол его поворота зависит от времени как , где – положительная постоянная. Найти полное ускорение точки на ободе колеса в тот момент времени , когда скорость этой точки равна . О т в е т. . Задача 2.Твердое тело вращается, замедляясь вокруг неподвижной оси с угловым ускорением , где – его угловая скорость. Найти среднюю угловую скорость тела за время, в течении которого оно будет вращаться, если в начальный момент времени его угловая скорость равна . О т в е т. . Задача 3.Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота по закону , где и – положительные постоянные. В момент времени угол . Найти зависимости от времени: а) угла поворота; б) угловой скорости. О т в е т. а) ; б) . Задача 4.Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением , где – постоянный вектор, – угол поворота из начального положения. Найти угловую скорость тела в зависимости от угла О т в е т. Задача 5.Твердое тело вращается с угловой скоростью где и – положительные постоянные, и – орты осей и Найти модули угловой скорости и углового ускорения в момент времени О т в е т. Задача 6.Колесо радиуса (рис. 12) катится без скольжения по горизонтальной поверхности со скоростью . Найти скорости точек колеса и , которые расположены на расстоянии ( < ) от центра колеса. О т в е т. , . Задача 7.Шар радиуса катится без скольжения по горизонтальной плоскости так, что его центр движется с постоянным ускорением Через время после начала движения его положение соответствует положению, изображенному на рис. 13. Найти ускорения точек и . О т в е т. , . Задача 8.Вращающийся диск (рис. 10) движется в положительном направлении оси . Найти уравнение , характеризующее положение мгновенной оси вращения, если в начальный момент ось диска находилась в точке и в дальнейшем движется с постоянным ускорением (без начальной скорости), а диск вращается с постоянной угловой скоростью . О т в е т. . Задача 9.Цилиндр катитсябез скольжения по горизонтальной плоскости. Радиус цилиндра равен Найти радиусы кривизны траекторий точек и (см. рис. 13). О т в е т. Задача 10.Круглый конус с углом полураствора и радиусом см катится без скольжения по горизонтальной плоскости, как показано на рис. 14. Вершина конуса закреплена шарнирно в точке которая находится на одном уровне с точкой – центром основания конуса. Скорость точки Найти модули: а) угловой скорости конуса; б) углового ускорения конуса. О т в е т. а) ; .
|