КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Наносекундный - пикосекундный диапазон длительностей.В [7] исследования проводились для длительностей импульсов 20 нс, 14 нс, 42 пс, для длин волн 532 нм и 1064 нм. Облучение проводилось лазером на Nd:YAG. Исследовались суспензии углеродных наночастиц в CS2 (средний размер углеродных частиц 0.14 mм). Измерения проводились в сфокусированных пучках. Результаты измерений представлены в таблице 4. Параметр w0 - расстояние, на котором интенсивность падает в 1/e2.. Были измерены пороги оптического ограничения. Под порогом оптического ограничения авторы [7] определяют значение мощности (энергии, плотности энергии), которое соответствует точке пересечения линий, соответствующих продолжениям линейного и нелинейного участков). На рисунке 4 приведены кривые оптического ограничения суспензией CBS в CS2 и в чистом CS2 .
Рис. 4. Нелинейное оптическое ограничение в суспензиях CBS в CS2 и в чистом CS2. Длительность импульса 14 нс, длина волны 532 нм, размер перетяжки 3.5 мкм.
В таблице 4 приведены также соответствующие этим мощностям энергии и плотности энергии. Для сравнения измерения были проведены также для чистого CS2 без наночастиц (нелинейные эффекты в чистом CS2 наблюдаются только при достаточно больших энергиях и вызваны электрострикцией). Таблица 4. Эффективность нелинейно-оптического ограничения суспензиями углеродных наночастиц в наносекундном-пикосекундном диапазоне длительностей (14 нс – 42 пс).
Для наносекундных импульсов пороги суспензий CBS значительно ниже порогов для чистого CS2 при тех же экспериментальных условиях. Так, для l=1064 нм при длительности импульса 20 нс пороговое значение для суспензии составляет 400 Вт, что приблизительно в 34 раза меньше соответствующего значения для чистого CS2. Для l=532 нм при длительности импульса 14 нс соответствующее отношение составляет 23. Однако, при длительности импульса 42 пс (длина волны 532 нм) наблюдается обратная ситуация – пороговая мощность и энергия в чистом CS2 приблизительно в 4 раза ниже чем в суспензии CBS. В [6] пикосекундные измерения проводились для этанола. В этом случае пропускание не меняется до входных энергий 100 Дж/см2. Это подтверждает тот факт, что в пикосекундном случае работает растворитель. В [15] сравнивалось оптическое ограничение в трех временных диапазонах – 10 нс (длина волны 1064 нм), 0.2 нс (длина волны 800 нм) и 0.3 пс (длина волны 800 нм). Исследования проводились в сфокусированных пучках. Диаметр частиц составлял около 50 нм. Порог ограничения для длительностей 10 нс и 0.2 нс приблизительно одинаков (пропускание начинает уменьшаться при энергии 1 mДж), однако ограничение на 0.2 нс значительно менее эффективное (см. таблица 5).
Таблица 5. Эффективность нелинейно-оптического ограничения суспензиями углеродных наночастиц в наносекундном-пикосекундном-субпикосекундном диапазоне длительностей (10 нс – 0.3 пс).
Это говорит о том, что требуется больше чем 0.2 нс для развития нелинейных процессов, ответственных за нелинейное ограничение. В субпикосекундном режиме (0.3 пс) картина приблизительно одинакова для CBS и чистого растворителя, т.е. наблюдаемое оптическое ограничение, вызвано не углеродными наночастицами, а изменением показателя преломления растворителя, не связанным с нагревом углеродной наночастицы. Таким образом, ограничение одиночных импульсов суспензиями углеродных наночастиц возможно в наносекундном и субнаносекундном диапазонах в видимом и ближнем ИК-диапазонах. Порог ограничения при этом приблизительно одинаков, однако ограничение в субнаносекундном диапазоне значительно менее эффективно, поскольку в этом случае время отклика среды больше чем время импульса. В субпикосекундном диапазоне работает сам растворитель, и наличие или отсутствие в нем углеродных наночастиц не влияет на результат ограничения (в [7] наличие углеродных частиц даже увеличивает порог).
|