Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Моделирование суммы двух и более равномерно распределенных случайных величин




Рассмотрим распределение суммы двух случайных величин, имеющих прямоугольное распределение на примере игры «Крепс».Смысл игры состоит в подбрасывании двух игральных костей, вычислении суммы выпавших очков и определении условий игры.

Очевидно, что для одной кости выпадение каждой из шести граней (и, таким образом, цифр 1, 2, 3, 4, 5 и 6) игральной кости является событием равновероятным и равным 1/6. Такой же вывод можно сделать и для второй игральной кости. Для удобства анализа сделаем кости различными, окрасив их, скажем, в красный и зеленый цвета. Тогда подбрасывание двух костей имеет 6*6=36 равновероятных исходов, которые приведены ниже в таблице 1.


Таблица 1

Зеленая кость
К  
р
а
с
н
а
я

В выделенных клетках таблицы 1 указана соответствующая сумма очков. Рассчитаем распределение вероятности P суммы очков при одновременном подбрасывании двух костей. В таблице 2 представлены результаты такого расчета.

Таблица 2

Сумма, С
Вероятность, Р 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Проанализируем график зависимости вероятности суммы очков Р от величины этой суммы. На рисунке 3 представлена эта зависимость.

Рисунок 3 - Зависимость вероятности суммы очков, от величины суммы очков

Из рисунка 3 видно, что вероятность Р суммы очков игральных костей описывается треугольным распределением. Таким образом, при суммировании двух случайных событий, имеющих равномерное распределение, получается распределение близкое к треугольному.

При рассмотрении суммы m случайных величин, имеющих прямоугольное распределение, обнаруживается, что при повышении значения m (m=6 и более), получаемое распределение стремится к нормальному распределению, т.е. к распределению, описываемому законом Гаусса.


Поделиться:

Дата добавления: 2015-04-15; просмотров: 152; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты