КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Моделирование суммы двух и более равномерно распределенных случайных величинРассмотрим распределение суммы двух случайных величин, имеющих прямоугольное распределение на примере игры «Крепс».Смысл игры состоит в подбрасывании двух игральных костей, вычислении суммы выпавших очков и определении условий игры. Очевидно, что для одной кости выпадение каждой из шести граней (и, таким образом, цифр 1, 2, 3, 4, 5 и 6) игральной кости является событием равновероятным и равным 1/6. Такой же вывод можно сделать и для второй игральной кости. Для удобства анализа сделаем кости различными, окрасив их, скажем, в красный и зеленый цвета. Тогда подбрасывание двух костей имеет 6*6=36 равновероятных исходов, которые приведены ниже в таблице 1. Таблица 1
В выделенных клетках таблицы 1 указана соответствующая сумма очков. Рассчитаем распределение вероятности P суммы очков при одновременном подбрасывании двух костей. В таблице 2 представлены результаты такого расчета. Таблица 2
Проанализируем график зависимости вероятности суммы очков Р от величины этой суммы. На рисунке 3 представлена эта зависимость.
Из рисунка 3 видно, что вероятность Р суммы очков игральных костей описывается треугольным распределением. Таким образом, при суммировании двух случайных событий, имеющих равномерное распределение, получается распределение близкое к треугольному. При рассмотрении суммы m случайных величин, имеющих прямоугольное распределение, обнаруживается, что при повышении значения m (m=6 и более), получаемое распределение стремится к нормальному распределению, т.е. к распределению, описываемому законом Гаусса.
|