КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Колебательной системыНа рис. 2 обозначены: 1. – соответственно жесткости амортизаторов 12, 13 (см. рис. 1) и упругой системы горизонтального привода. Коэффициенты неупругого сопротивления амортизаторов и упругой системы между активной и реактивной части системы горизонтального привод - . 2. – соответственно, жесткости амортизаторов 12, 13 (см. рис. 1) и упругой системы между активной и реактивной частями вертикального привода. Коэффициенты неупругого сопротивления амортизаторов и упругой системы между активной и реактивной частями системы вертикального привода - . 3. – амплитуды возмущающего момента горизонтальных колебаний и силы вертикальных колебаний, соответственно. Принимая для системы горизонтальных колебаний в качестве обобщенных координат и угловые перемещения инерционных элементов и , записывая выражения кинетической и потенциальной энергии, а также функции диссипации, дифференцируя их, и подставляя в уравнение Лагранжа 2-го рода, получим следующие дифференциальные уравнения движения систем (1) где – угловая частота возбуждения колебаний. При наличии в линейных дифференциальных уравнениях членов с четными и нечетными производными решения следует искать через синусоидальные и косинусоидальные компоненты, иными словами, с двумя неизвестными компонентами (или через амплитудную величину и фазу перемещения) (2) Получим систему алгебраических уравнений, из которой согласно [1] определитель системы раскрывается как сумма квадратов действительной и мнимой частей (3) (4) Величины амплитуд колебаний масс и фазовых сдвигов по отношению к возмущающему моменту в соответствии с работой [1] определяются по следующим формулам: (5) (6) . (7) Из (4) мы разделим , на и обозначив ; (8) Имеем Пренебрегая вследствие малости произведением и обозначая ; (9) имеем (10) Из (10), (5), (6), (7) перепишем (11) (12) Используя (11), (12) и задавая примерные параметры системы строим графики зависимостей амплитуды и угла сдвига фаз активной массы от соотношения частот на рис. 3. Аналогично, для вертикальных колебаний, применяя тот же метод [1] получаем выражения амплитуд
(13) и угла сдвига фаз (14) Мы считаем жесткость механической конструкции (рычаги 10, 14; вал 11, см. рис. 1) бесконечной, поэтому вертикальная суммарная жест-
кость где с9 - жесткость центральной пружины 9.
А б Рис. 3. Графики зависимости амплитуды (а) и угла сдвига фаз (б)
|