Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Стандартная форма задачи линейного программирования




Любая задача ЛП может быть сведена к своему частному виду, который называется стандартной формой и для которого разработаны эффективные методы решения.

Задача ЛП в стандартной форме не содержит функциональных ограничений типа неравенств (они или отсутствуют, или путем введения новых переменных преобразованы в ограничения типа равенств и простых неравенств). Все простые ограничения этой задачи сводятся к требованию неотрицательности всех переменных.

Таким образом, СЗЛП математически формулируется следующим образом.

Минимизировать функцию цели:

, (8.5)

или в матричной форме

при выполнении условий

ФОР: или ; (8.6)
ПО: , n >m. (8.7)

Относительно уравнений системы (8.6) будем дополнительно предполагать, что они линейно независимы, т.е. не являются следствием друг друга (rang(A)=m). Если это не так, то предварительно решается задача об отыскании в (8.6) максимального числа линейно независимых уравнений, а остальные уравнения отбрасываются как незначимые.

Система уравнений (8.6) может рассматриваться как частный случай решения СЛУ с прямоугольной матрицей при условии выполнения дополнительных ограничений (8.7) . Для решения таких систем используется изложенный в разделе 4.8 общий подход решения СЛУ с прямоугольной матрицей:

Вектор неизвестных условно можно разделить на две части: - вектор зависимых переменных с m компонентами и - вектор n-m независимых переменных. СЛУ (8.6) записывается в матричном виде

.

При этом зависимые переменные выражаются через независимые:

. (8.8)

С учетом разделения переменных на два класса, ={ , } целевая функция принимает вид

, (8.9)

где r=nm, - коэффициенты при зависимых, а - при независимых переменных.

Доказано, что решение ЗЛП находится на границе ОДЗ (в вершине или на ребре) Отсюда простейший подход просмотреть все допустимые базисные решения и выбрать то, которое минимизирует целевую функцию. Однако реально приходится иметь дело с задачами достаточно большой размерности, и простой перебор базисных решений может стать недопустимым по времени даже для современных ЭВМ. Более эффективный алгоритм (симплекс-метод), предложен в 1947 году американским математиком Д. Данцигом. Он осуществляет направленный переход от одного допустимого вектора переменных к другому с меньшим значением целевой функции.

Поскольку оптимальное решение задачи ЛП совпадает с базисным решением системы (8.8), для которого вектор независимых переменных равен нулю: , а процедура поиска решения осуществляется пошаговыми переходами от одного базиса к другому, то в качестве исходного вектора (начальный план) необходимо выбирать любое допустимое базисное решение, удовлетворяющее системе простых ограничений . Получение начального базисного решения составляет специальную задачу ЛП (раздел 8.7).

8.3. «Симплекс–метод» решения задачи ЛП

Симплекс–метод представляет собой упорядоченный перебор допустимых базисных решений задачи ЛП, каждый шаг которого связан с уменьшением функции цели. Основная идея симплекс- метода заключается в том, что решение находится последовательным улучшением плана путем движения по ребрам (симплексам) выпуклого многогранника ОДЗ в направлении антиградиента целевой функции. Движение по ребру означает варьирование только одной независимой переменной. Все остальные независимые переменные равны нулю.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 90; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты