КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Структурные средние.Для характеристики структуры вариационных рядов применяются так называемые структурные средние. Наиболее часто используются в экономической практике мода и медиана. Мода - это наиболее часто встречающаяся варианта признака в данной совокупности. В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар «А» реализуют в городе 9 фирм по цене в рублях: 44; 43; 44; 45; 43; 46; 42; 46;43; Так как чаще всего встречается цена 43 рубля, то она и будет модальной. В интервальных вариационных рядах моду определяют приближенно по формуле , где x0 - нижняя граница модального интервала; - величина модального интервала; - частота модального интервала; - частота интервала, предшествующая модальному; - частота интервала, следующая за модальным. Место нахождения модального интервала определяют по наибольшей частоте (таблица 5.3) Таблица 5.3. Распределение населения РФ по уровню среднедушевого месячного дохода в I-ом полугодии 1995 года
Интервал 100-300 в данном распределении будет модальным, т.к. он имеет наибольшую частоту ( ). Тогда по вышеуказанной формуле мода будет равна: руб. Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды и др. Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значения изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части. В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда. Так в группе студентов из 27 человек медианным будет рост у 14-го, если они выстроятся по росту. Если число единиц совокупности четное, то медианой будет средняя арифметическая из значений признака у двух средних членов ряда. Так, если в группе 26 человек, то медианным будет рост средний 13-го и 14-го студентов. В интервальных вариационных рядах медиана определяется по формуле: , где x0 - нижняя граница медианного интервала; - величина медианного интервала; - сумма накопленных частот до медианного интервала; fMe - частота медианного интервала. По данным таблицы 5.3. определим медианное значение среднедушевого дохода. Для этого необходимо определить, какой интервал будет медианным. Используя формулу накопленной частоты до медианы, т.е. середины (%) . Дробное значение SМе (всегда при четном числе членов) равное 50,5% говорит о том, что середина ряда находится между 50% и 51%, т.е. в третьем интервале. Отсюда медиана по формуле будет определена. руб. Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M0<Me< имеет место правосторонняя асимметрия. Если же <Me<M0 - левосторонняя асимметрия ряда. По приведенному примеру можно сделать заключение, что наиболее распространенным является доход порядка 271 руб. в месяц. В то же время более половины населения располагают доходом свыше 381 руб., при среднем уровне 435 руб. руб. Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения населения по уровню среднедушевого денежного дохода. Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные (по числу единиц) части - квартили, на десять частей - децили, на сто частей - перцентили. Так формула первого квартиля будет . Второй квартиль равен медиане. Формула третьего квартиля будет . Аналогичны формулы децилей. Пятый дециль равен медиане. Среди множества варьирующих признаков существуют признаки, которыми одни единицы совокупности обладают, а другие не обладают. Такие признаки называются альтернативными. Примером таких признаков являются: наличие бракованной продукции, ученая степень у преподавателя, наличие академической задолженности у студента и др. Обозначим: 1 — наличие интересующего нас признака; 0 — его отсутствие; р — доля единиц, обладающих данным признаком; q — доля единиц, не обладающих данным признаком; тогда р+q=1.
|