КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сущность и значение средней величины. Область применения средних величин в статистическом исследовании
Средние величины используются на этапе обработки и обобщения полученных первичных статистических данных. Потребность определения средних величин связана с тем, что у различных единиц исследуемых совокупностей индивидуальные значения одного и того же признака, как правило, неодинаковы. Средней величиной называют показатель, который характеризует обобщённое значение признака или группы признаков в исследуемой совокупности. Если исследуется совокупность с качественно однородными признаками, то средняя величина выступает здесь как типическая средняя. Например, для групп работников определённой отрасли с фиксированным уровнем дохода определяется типическая средняя расходов на предметы первой необходимости, т.е. типическая средняя обобщает качественно однородные значения признака в данной совокупности, каковым является доля расходов у работников данной группы на товары первой необходимости. При исследовании совокупности с качественно разнородными признаками на первый план может выступить нетипичность средних показателей. Такими, к примеру, являются средние показатели произведённого национального дохода на душу населения (разные возрастные группы), средние показатели урожайности зерновых культур по всей территории России (районы разных климатических зон и разных зерновых культур), средние показатели рождаемости населения по всем регионам страны, средние температуры за определенный период и т.д. Здесь средние величины обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). Такие средние величины называют системными средними. Таким образом, значение средних величин состоит в их обобщающей функции. Средняя величина заменяет большое число индивидуальных значений признака, обнаруживая общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами.
2. Виды средних величин и методы их расчёта
На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой. Используются две категории средних величин (рис. 2.14): * степенные средние; * структурные средние. Первая категория степенных средних включает: среднюю арифметическую, среднюю гармоническую, среднюю квадратическую, среднюю геометрическую и средняя кубическая.
Рис. 2.14. Виды средних в статистике
Вторая категория (структурные средние) - это мода и медиана. Эти виды средних будут рассмотрены в теме: «Структурные характеристики вариационного ряда распределения». Введём следующие условные обозначения: - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - варианты (значение) осредняемого признака или серединное значение интервала, в котором измеряется вариант; n – число вариант; - частота (повторяемость индивидуальных значений признака). k - показатель степени. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняясчитается по не сгруппированным данным и имеет следующий вид: , (2.15) Взвешенная средняя считается по сгруппированным данным и имеет общий вид: . (2.16)
В зависимости от того, какое значение принимает показатель степени, различают следующие виды степенных средних: - средняя арифметическая, если k = 1; - средняя гармоническая, если k = -1; - средняя геометрическая, если k = 0; - средняя квадратическая, если k = 2; - средняя кубическая, если k = 3. Формулы степенных средних приведены в табл. 2.9. Таблица 2.9
|