КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гидравлическое сцепление (гидромуфта)В гидромуфте (рисунок 3.1) ведущее (насосное) колесо 3 вместе с корпусом 2 связано с коленчатым валом двигателя, а ведомое (турбинное) 1 – с трансмиссией. Колеса имеют форму тора, между наружной 5 и внутренней 6 частями которого расположены плоские радиальные лопатки 4. Корпус примерно на 90 % заполнен рабочей жидкостью – турбинным маслом малой вязкости. Турбинное колесо расположено предельно близко к насосному колесу. При вращении насосного колеса кинетическая энергия жидкости, находящейся между его лопатками и движущейся под действием центробежных сил к периферии, передается турбинному колесу. Пройдя по его межлопаточным каналам, жидкость вновь попадает в насосное колесо. При достижении определенной частоты вращения турбинного колеса кинетической энергии становится достаточно для того, чтобы автомобиль тронулся с места. При дальнейшем повышении частоты вращения коленчатого вала двигателя оба колеса гидромуфты начинают вращаться практически с одинаковой скоростью. Если угловые скорости вращения насосного ωн и турбинного ωт колес равны, то отсутствует движение рабочей жидкости, так как центробежные силы, развиваемые жидкостью в межлопаточном пространстве колес, взаимно уравновешиваются. Следовательно, для обеспечения работы гидромуфты необходимо соблюдать неравенство ωн ≠ ωт . Это означает, что при работе гидромуфты турбинное колесо всегда проскальзывает относительно насосного. При трогании автомобиля с места, когда угловая скорость турбинного колеса ωт = 0, проскальзывание будет наибольшим (100 %), а при установившейся работе оно составляет 2…3 % .
Рисунок 3.1 – Схема гидромуфты: 1 – турбинное колесо; 2 – корпус; 3 – насосное колесо; 4 – лопатки; 5 – наружная часть тора; 6 – внутренняя часть тора; 7 – клапаны заполнения; 8 – радиатор; 9 – клапан насоса предохранительный; 10 – насос; 11 – бак; 12 – клапаны опорожнения Скольжение S определяется по формуле S = (ωн – ωт) / ωн . Характерным для гидромуфты является то, что она не изменяет величину крутящего момента при его передаче от двигателя к трансмиссии, т.е. Мн = Мт , где Мн = Мт – крутящие моменты на насосном и турбинном колесах, соответственно. В связи с этим, мощности на насосном и турбинном колесах не равны: Nн = Мн ωн ; Nт = Мт ωт . Таким образом, КПД гидромуфты ηгм = Nт / Nн = ωт / ωн , а скольжение S = 1 – ηгм . На рисунке 3.2 представлена внешняя характеристика гидромуфты. Это экспериментальная характеристика зависимости крутящего момента М, передаваемого гидромуфтой, ее КПД ηгм и скольжения S от отношения ωт / ωн при постоянной угловой скорости ωн вращения насосного колеса. КПД гидромуфты не может быть равным единице, так как при равенстве угловых скоростей вращения насосного и турбинного колес гидромуфта не может передавать крутящий момент. Максимальный КПД гидромуфты составляет 0,97.
Гидромуфта по сравнению с фрикционным сцеплением имеет следующие преимущества: - обеспечивает плавное трогание автомобиля с места; - снижает динамические нагрузки в трансмиссии автомобиля и крутильные колебания двигателя в 1,5…4,0 раза на переходных режимах [8]; - повышает устойчивость работы двигателя при низких скоростях движения (в пробках), так как допускает длительную работу с большой пробуксовкой насосного и турбинного колес; - не требует регулировки в эксплуатации, так как детали гидромуфты практически не изнашиваются; - облегчает управление автомобилем; - повышает проходимость автомобиля. Однако гидромуфта в качестве самостоятельного агрегата, выполняющего функции сцепления, не используется, так как при переключении передач для обеспечения выключения необходима система ее опорожнения, а для обеспечения включения – система заполнения. Эти системы (см. рисунок 3.1) включают клапаны опорожнения 12, бак 11, насос питания 10 с предохранительным клапаном 9, клапаны заполнения 7 и радиатор 8 для охлаждения жидкости [2]. Поэтому гидромуфта может применяться только вместе с обычным фрикционным сцеплением, которое устанавливается за ней последовательно и служит лишь для переключения передач. Это повышает сложность, металлоемкость и стоимость трансмиссии. Кроме того, вследствие скольжения гидромуфты и нагрева рабочей жидкости снижается КПД передачи и увеличивается расход топлива.
|