Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Разработка прогнозов с помощью метода скользящей средней




Читайте также:
  1. I. Показания для применения генеалогического метода
  2. I.5.2) Разработка Свода Юстиниана.
  3. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  4. III. Решение логических задач с помощью рассуждений
  5. Lt;variant>возлагается. Эта обязанность состоит в том, что обвиняемому дозволяется обратиться за юридической помощью
  6. lt;variant>Эта обязанность состоит в том, что обвиняемому дозволяется обратиться за юридической помощью
  7. Автоматизированный перевод документов с помощью программы Promt
  8. Алгоритм 1.2. Выделение групп предприятий с помощью заливки контрастным цветом
  9. Алгоритм метода простой итерации
  10. Алгоритм построения сокращенной ДНФ с помощью КНФ

Одним из наиболее старых и широко известных методов сглаживания временных рядов является метод скользящих средних. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов. Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного периода. Затем период сдвигается на одно наблюдение, и расчет средней повторяется, причем периоды определения средней берутся все время одинаковыми. Таким образом, в каждом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.

При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сгаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений (n – величина интервала сглаживания). При больших значениях n колеблемость сглаженного ряда значительно снижается. Одновременно заметно сокращается количество наблюдений, что создает трудности.

Выбор интервала сглаживания зависит от целей исследования. При этом следует руководствоваться тем, в какой период времени происходит действие, а следовательно, и устранение влияния случайных факторов.

Данный метод используется при краткосрочном прогнозировании. Его рабочая формула:

= + , (1)

где t + 1 – прогнозный период;

t – период, предшествующий прогнозному периоду (год, месяц и т.д.);

yt+1 – прогнозируемый показатель;

– скользящая средняя за два периода до прогнозного;

n – число уровней, входящих в интервал сглаживания;

yt – фактическое значение исследуемого явления за предшествующий период;

yt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.

 


Дата добавления: 2015-04-16; просмотров: 15; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты