Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Разработка прогнозов методом наименьших квадратов




Читайте также:
  1. I.5.2) Разработка Свода Юстиниана.
  2. II. Индукция методом исключения
  3. А. ЛАБОРАТОРНОЕ ИЗМЕРЕНИЕ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ НА ГРАНИЦЕ РАЗДЕЛА ЖИДКОСТИ МЕТОДОМ СЧЕТА КАПЕЛЬ
  4. Алгоритм расчета переходного процесса классическим методом
  5. Алгоритм расчета размерных цепей методом одного квалитета.
  6. Алгоритм расчета размерных цепей теоретическо-вероятностным методом.
  7. Алгоритм решения ЗЛП графическим методом
  8. Анализ переходных процессов в электрических цепей постоянного тока методом переменных состояния.
  9. Анализ схемы принятия решений и разработка предложений по совершенствованию управления в подразделении
  10. Аналіз позиції організації в конкурентній боротьбі за методом конкурентних переваг

 

Сущность метода состоит в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами. Расчетные величины находятся по подобранному уравнению – уравнению регрессии.

Чем меньше расстояние между фактическими значениями и расчетными, тем более точен прогноз, построенный на основе уравнения регрессии. Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. Иногда принимаются во внимание соображения о характере роста уровней ряда. Так, если рост выпуска продукции ожидается в арифметической прогрессии, то сглаживание производится по прямой. Если же оказывается, что рост идет в геометрической прогрессии, то сглаживание надо производить по показательной функции.

Рабочая формула метода наименьших квадратов:

у t+1 = а*Х + b, (4)

где t + 1 – прогнозный период;

yt+1 – прогнозируемый показатель;

a и b - коэффициенты;

Х - условное обозначение времени.

 

Расчет коэффициентов a иbосуществляется по следующим формулам:

 

 
 

где, Уф – фактические значения ряда динамики;

n – число уровней временного ряда;

 
 


Сглаживание временных рядов методом наименьших квадратов служит для отражения закономерности развития изучаемого явления. В аналитическом выражении тренда время рассматривается как независимая переменная, а уровни ряда выступают как функция этой независимой переменной. Ясно, что развитие явления зависит не от того, сколько лет прошло с отправного момента, а от того, какие факторы влияли на его развитие, в каком направлении и с какой интенсивностью. Развитие явления во времени выступает как результат действия этих факторов.

Правильно установить тип кривой, тип аналитической зависимости от времени – одна из самых трудных задач предпрогнозного анализа.

Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки, вычисляемой по формуле

 

S = , (7)

 

где yф – фактические значения ряда динамики;



yр – расчетные (сглаженные) значения ряда динамики;

n – число уровней временного ряда;

р – число параметров, определяемых в формулах, описывающих тренд.

Недостатки метода наименьших квадратов:

1) изучаемое экономическое явление мы пытаемся описать с помощью математического уравнения, поэтому прогноз будет точен для небольшого периода времени, и уравнение регрессии следует пересчитывать по мере поступления новой информации;

2) сложность подбора уравнения регрессии. Эта проблема разрешима при использовании типовых компьютерных программ.


Дата добавления: 2015-04-16; просмотров: 19; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты