Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Нелинейные элементы и их характеристики. Графоаналитический метод расчета




Читайте также:
  1. A. Элементы резания при точении
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. Amp; Методичні вказівки
  9. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  10. Cтруктуры внешней памяти, методы организации индексов

Нелинейным элементом электрической цепи считается элемент, значения параметров которого зависят от значения тока данного элемента или напряжения на его выводах.

К нелинейным элементам электрических цепей относятся разнообразные полупроводниковые приборы, устройства, содержащие намагничивающие обмотки с ферромагнитными магнитопроводами (при переменном токе), лампы накаливания, электрическая дуга и др.

Важнейшей характеристикой нелинейных элементов является вольт-амперная характеристика (в.а.х.), представляющая собой зависимость между током нелинейного элемента и напряжением на его выводах: I(U) или U(I).

Имея в.а.х. нелинейного элемента, можно определить его сопротивления при любых значениях тока или напряжения. Различают два вида сопротивлений нелинейных элементов: статическое и дифференциальное.

Для расчета нелинейных электрических цепей применяется в большинстве случаев графоаналитический метод.

Графоаналитический метод основан на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) элементов сложной цепи.

Рассмотрим этот метод на примере последовательного соединения нелинейного элемента НЭ1 и линейного R2 (рис.12).

Характеристику нелинейного элемента I1=f(U1) строят обычным образом. Опрокинутая характеристика линейного элемента, представляющая собой прямую линию, может быть построена по двум точкам. Если U2=0, то характеристике I2=f(U2) принадлежит точка "В", если U1=0, то характеристика I2=f(U2) пересекает ось ординат в точке "С", определяемой соотношением I2 = Uо/R. Точка пересечения двух графиков дает решение задачи.

 


Дата добавления: 2015-04-16; просмотров: 6; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты