Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Основные параметры синусоидальных величин (начальная фаза, сдвиг фаз, мгновенное, амплитудное, действующее и среднее значение). Способы представления синусоидальных величин




Фаза (мгновенный фазовый угол) гармонической функции в радианах (рад) или градусах – это аргумент синусоидальной функции, отсчитываемый от нулевого значения функции в положительном направлении: ωt + ψu и ωt + ψi и т.д.

Начальная фаза - ψ ( начальный фазовый угол) – это значение фазы при t=0. Начальная фаза – алгебраическая величина, т.е. имеет знак.

Сдвиг фаз между двумя гармоническими функциями – это разность начальных фаз двух синусоидальных функции, например, U1 и U2, т.е.: ψu = ψu1 - ψu2. Сдвиг фаз φ величина алгебраическая.

Мгновенное значение синусоидального напряжения (тока, ЭДС) – это значение функции в рассматриваемый момент времени. Фактически мгновенное значение – это точка на графике функции в любой момент времени. Мгновенное значение тока, напряжения и ЭДС: i(t), u(t), e(t).

Амплитуда гармонического напряжения (тока, ЭДС) – наибольшее значение синусоидальной функции, обозначаемое соответствующей прописной буквой с индексом m: Um ( Im, Em ).

Амплитуда может быть как положительной, так и отрицательной.

Действующее значение гармонической функции - это его среднеквадратичное значение за время Т, т.е.: I = Im / √2 ≈ 0,707Im, U = Um / √2 ≈ 0,707Um, E = Em / √2 ≈ 0,707Em.

За средние значения тока, ЭДС и напряжения принимают среднее арифметическое значение соответствующей величины за полпериода (среднее значение за период, равно нулю): Eср = 2Em/π = 0,637Em, Iср = 2Iт /π = 0,637Im, Uср = 2Uт /π = 0,637Uт.

Способы представления синусоидальных величин.

Существует три способа – графический (в виде графиков), векторный (в виде векторных диаграмм) (рис.3.3) и с помощью комплексных чисел, например, Im = Im еjα = Im cos α + jIm sin α


Поделиться:

Дата добавления: 2015-04-16; просмотров: 186; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты